相关习题
 0  262939  262947  262953  262957  262963  262965  262969  262975  262977  262983  262989  262993  262995  262999  263005  263007  263013  263017  263019  263023  263025  263029  263031  263033  263034  263035  263037  263038  263039  263041  263043  263047  263049  263053  263055  263059  263065  263067  263073  263077  263079  263083  263089  263095  263097  263103  263107  263109  263115  263119  263125  263133  266669 

科目: 来源: 题型:

【题目】若四面体的三组对棱分别相等,即,给出下列结论:

①四面体每组对棱相互垂直;

②四面体每个面的面积相等;

③从四面体每个顶点出发的三条棱两两夹角之和大于而小于

④连接四面体每组对棱中点的线段相互垂直平分;

⑤从四面体每个顶点出发的三条棱的长可作为一个三角形的三边长.

其中正确结论的个数是(

A.2B.3C.4D.5

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线与二次曲线4个不同的交点,由下面的草图可以看出,下面三个结论是成立的,请给出证明.

(1).两曲线的4个交点中,至少有两个交点位于轴的下方;

(2).抛物线必与轴有两个不同的交点,记为

(3).两曲线的4个交点中,必存在一点,使.

.的不同取值会有无数个图形,此处仅就各给出一个示意图,同时也就限制由图看出的解答.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,函数,函数

1)当函数图象与轴相切时,求实数的值;

2)若函数恒成立,求实数的取值范围;

3)当时,讨论函数在区间上的零点个数.

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂生产了一批高精尖的仪器,为确保仪器的可靠性,工厂安排了一批专家检测仪器的可靠性,毎台仪器被毎位专家评议为“可靠”的概率均为,且每台仪器是否可靠相互独立.

1)当,现抽取4台仪器,安排一位专家进行检测,记检测结果可靠的仪器台数为,求的分布列和数学期望;

2)为进一步提高出厂仪器的可靠性,工厂决定每台仪器都由三位专家进行检测,只有三位专家都检验仪器可靠,则仪器通过检测.若三位专家检测结果都为不可靠,则仪器报废.其余情况,仪器需要回厂返修.拟定每台仪器检测费用为100元,若回厂返修,每台仪器还需要额外花费300元的维修费.现以此方案实施,且抽检仪器为100台,工厂预算3.3万元用于检测和维修,问费用是否有可能会超过预算?并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】试确定平面上是否存在满足下述条件的两个不相交的无限点集

(1)在中,任何三点不共线,且任何两点的距离至少为1;

(2)任何一个顶点在中的三角形,其内部均存在一个中的点,任何一个顶点在中的三角形,其内部均存在一个中的点.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥P-ABCD的底面是矩形,PA⊥平面ABCDEF分别是ABPD的中点,且PA=AD

(Ⅰ)求证:AF∥平面PEC

(Ⅱ)求证:平面PEC⊥平面PCD

查看答案和解析>>

科目: 来源: 题型:

【题目】在箱子中有10个小球,其中有3个红球,3个白球,4个黑球.从这10个球中任取3个.求:

1)取出的3个球中红球的个数的分布列;

2)取出的3个球中红球个数多于白球个数的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为(α为参数),直线C2的方程为,以O为极点,x轴的正半轴为极轴建立极坐标系.

(1)求曲线C1和直线C2的极坐标方程;

(2)若直线C2与曲线C1交于A,B两点,求

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)讨论函数上的单调性;

(2)证明: .

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,椭圆W:的焦距与椭圆Ω:+y2=1的短轴长相等,且W与Ω的长轴长相等,这两个椭圆的在第一象限的交点为A,直线l经过Ω在y轴正半轴上的顶点B且与直线OA(O为坐标原点)垂直,l与Ω的另一个交点为C,l与W交于M,N两点.

(1)求W的标准方程:

(2)求

查看答案和解析>>

同步练习册答案