科目: 来源: 题型:
【题目】函数
的部分图象如图所示,则下列叙述正确的是( )
![]()
A.函数
的图象可由
的图象向左平移
个单位得到
B.函数
的图象关于直线
对称
C.函数
在区间
上是单调递增的
D.函数
图象的对称中心为![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数f(x)满足f(x+1)-f(x)=-2x+1,且f(2)=15.
(1)求函数f(x)的解析式;
(2) 令g(x)=(2-2m)x-f(x).
① 若函数g(x)在x∈[0,2]上是单调函数,求实数m的取值范围;
② 求函数g(x)在x∈[0,2]上的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】
年
月以来,湖北省武汉市持续开展流感及相关疾病监测,发现多起病毒性肺炎病例,均诊断为病毒性肺炎肺部感染,后被命名为新型冠状病毒肺炎(CoronaVirusDisease2019,COVID-19),简称“新冠肺炎”,下图是
年
月
日至
月
日累计确诊人数随时间变化的散点图.
![]()
为了预测在未采取强力措施下,后期的累计确诊人数,建立了累计确诊人数
与时间变量
的两个回归模型,根据
月
日至
月
日的数据(时间变量
的值依次
,
,…,
)建立模型
和
.
参考数据:其中
,
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)根据散点图判断,
和
哪一个适宜作为累计确诊人数
与时间变量
的回归方程类型?(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及附表中数据,建立
关于
的回归方程;
(3)以下是
月
日至
月
日累计确诊人数的真实数据,根据(2)的结果回答下列问题:
时间 |
|
|
|
|
|
累计确诊人数的真实数据 |
|
|
|
|
|
(i)当
月
日至
月
日这
天的误差(模型预测数据与真实数据差值的绝对值与真实数据的比值)都小于
则认为模型可靠,请判断(2)的回归方程是否可靠?
(ii)
年
月
日在人民政府的强力领导下,全国人民共同取了强力的预防“新冠肺炎”的措施,若采取措施
天后,真实数据明显低于预测数据,则认为防护措施有效,请判断预防措施是否有效?并说明理由.
附:对于一组数据
,
,……,
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】在四棱锥P-ABCD中,底面ABCD为直角梯形,
,
,
,
,且平面
平面ABCD.
![]()
(1)求证:
;
(2)在线段PA上是否存在一点M,使二面角M-BC-D的大小为
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了解中学生课外阅读情况,现从某中学随机抽取
名学生,收集了他们一年内的课外阅读量(单位:本)等数据,以下是根据数据绘制的统计图表的一部分.
![]()
![]()
下面有四个推断:
①这
名学生阅读量的平均数可能是
本;
②这
名学生阅读量的
分位数在区间
内;
③这
名学生中的初中生阅读量的中位数一定在区间
内;
④这
名学生中的初中生阅读量的
分位数可能在区间
内.
所有合理推断的序号是________.
查看答案和解析>>
科目: 来源: 题型:
【题目】甜皮鸭,乐山人称卤鸭子,也称嘉州甜皮鸭,是乐山著名美食,起源于乐山市夹江县木城古镇,每年吸引成千上万的外地人前来品尝.某商家生产卤鸭子,每公斤鸭子的成本为
元,加工费为
元(
为常数),且
,设该商家每公斤卤鸭子的售价为
元(
),日销售量
(单位:公斤),且
(
为自然对数的底数).根据市场调查,当每公斤卤鸭子的出售价为
元时,日销售量为
公斤.
(1)求该商家的每日利润
元与每公斤卤鸭子的出售价
元的函数关系式;
(2)若
,当每公斤卤鸭子的出售价
为多少元时,该商家的利润
最大,并求出利润的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com