科目: 来源: 题型:
【题目】某学校为了加强学生数学核心素养的培养,锻炼学生自主探究学习的能力,他们以函数
为基本素材,研究该函数的相关性质,取得部分研究成果如下:其中研究成果正确的是( )
A.同学甲发现:函数的定义域为(﹣1,1),且f(x)是偶函数
B.同学乙发现:对于任意的x∈(﹣1,1),都有![]()
C.同学丙发现:对于任意的a,b∈(﹣1,1),都有![]()
D.同学丁发现:对于函数定义域内任意两个不同的实数x1,x2,总满足![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数).以原点为极点,
轴的非负半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求
的极坐标方程;
(2)若曲线
的极坐标方程为
,直线
与
在第一象限的交点为
,与
的交点为
(异于原点),求
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
(
且
)的图象过点
,
.若函数
在定义域内存在实数t,使得
成立,则称函数
具有性质M.
(1)求实数a的值;
(2)判断函数
是否具有性质M?并说明理由;
(3)证明:函数
具有性质M.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙二人独立破译同一密码,甲破译密码的概率为
,乙破译密码的概率为
.记事件A:甲破译密码,事件B:乙破译密码.
(1)求甲、乙二人都破译密码的概率;
(2)求恰有一人破译密码的概率;
(3)小明同学解答“求密码被破译的概率”的过程如下:
解:“密码被破译”也就是“甲、乙二人中至少有一人破译密码”所以随机事件“密码被破译”可以表示为
所以![]()
请指出小明同学错误的原因?并给出正确解答过程.
查看答案和解析>>
科目: 来源: 题型:
【题目】《九章算术》中“勾股容方”问题:“今有勾五步,股十二步,问勾中容方几何?”魏晋时期数学家刘徽在其《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图1,用对角线将长和宽分别为
和
的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图2所示的矩形.该矩形长为
,宽为内接正方形的边长
.由刘徽构造的图形还可以得到许多重要的结论,如图3.设
为斜边
的中点,作直角三角形
的内接正方形对角线
,过点
作
于点
,则下列推理正确的是( )
![]()
①由图1和图2面积相等得
;
②由
可得
;
③由
可得
;
④由
可得
.
A.①②③④B.①②④C.②③④D.①③
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥
中,底面
是平行四边形,
平面
,
,
,
是棱
上的一点.
(1)证明:
平面
;
(2)若
平面
,求
的值;
(3)在(2)的条件下,三棱锥
的体积是18,求
点到平面
的距离.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】“中国大能手”是央视推出的一档大型职业技能挑战赛类节目,旨在通过该节目,在全社会传播和弘扬“劳动光荣、技能宝贵、创造伟大”的时代风尚.某公司准备派出选手代表公司参加“中国大能手”职业技能挑战赛.经过层层选拔,最后集中在甲、乙两位选手在一项关键技能的区分上,选手完成该项挑战的时间越少越好.已知这两位选手在15次挑战训练中,完成该项关键技能挑战所用的时间(单位:秒)及挑战失败(用“×”表示)的情况如下表1:
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
甲 | × | 96 | 93 | × | 92 | × | 90 | 86 | × | × | 83 | 80 | 78 | 77 | 75 |
乙 | × | 95 | × | 93 | × | 92 | × | 88 | 83 | × | 82 | 80 | 80 | 74 | 73 |
据表1中甲、乙两选手完成该项关键技能挑战成功所用时间的数据,应用统计软件得下表2:
数字特征 | 均值(单位:秒)方差 | 方差 |
甲 | 85 | 50.2 |
乙 | 84 | 54 |
(1)在表1中,从选手甲完成挑战用时低于90秒的成绩中,任取2个,求这2个成绩都低于80秒的概率;
(2)若该公司只有一个参赛名额,以该关键技能挑战成绩为标准,根据以上信息,判断哪位选手代表公司参加职业技能挑战赛更合适?请说明你的理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】中学生研学旅行是通过集体旅行、集中食宿方式开展的研究性学习和旅行体验相结合的校外教育活动,是学校教育和校外教育衔接的创新形式,是综合实践育人的有效途径.每年暑期都会有大量中学生参加研学旅行活动.为了解某地区中学生暑期研学旅行支出情况,在该地区各个中学随机抽取了部分中学生进行问卷调查,从中统计得到中学生暑期研学旅行支出(单位:百元)频率分布直方图如图所示.
![]()
(1)利用分层抽样在
,
,
三组中抽取5人,应从这三组中各抽取几人?
(2)从(1)抽取的5人中随机选出2人,对其消费情况进行进一步分析,求这2人不在同一组的概率;
(3)假设同组中的每个数据都用该区间的左端点值代替,估计该地区中学生暑期研学旅行支出的平均值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com