科目: 来源: 题型:
【题目】目前,国内很多评价机构经过反复调研论证,研制出“增值评价”方式。下面实例是某市对“增值评价”的简单应用,该市教育评价部门对本市所高中按照分层抽样的方式抽出所(其中,“重点高中”所分别记为,“普通高中”所分别记为),进行跟踪统计分析,将所高中新生进行了统的入学测试高考后,该市教育评价部门将人学测试成绩与高考成绩的各校平均总分绘制成了雷达图.点表示学校入学测试平均总分大约分,点表示学校高考平均总分大约分,则下列叙述不正确的是( )
A.各校人学统一测试的成绩都在分以上
B.高考平均总分超过分的学校有所
C.学校成绩出现负增幅现象
D.“普通高中”学生成绩上升比较明显
查看答案和解析>>
科目: 来源: 题型:
【题目】在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期.一研究团队统计了某地区100名患者的相关信息,得到如下表格:
潜伏期(单位:天) | |||||||
人数 | 85 | 205 | 310 | 250 | 130 | 15 | 5 |
(1)求这1000名患者的潜伏期的样本平均数(同一组中的数据用该组区间的中点值作代表);
(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表.请将列联表补充完整,并根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关;
潜伏期天 | 潜伏期天 | 总计 | |
50岁以上(含50岁) | 100 | ||
50岁以下 | 55 | ||
总计 | 200 |
附:
0.05 | 0.025 | 0.010 | |
3.841 | 5.024 | 6.635 |
,其中.
查看答案和解析>>
科目: 来源: 题型:
【题目】为提高产品质量,某企业质量管理部门经常不定期地对产品进行抽查检测,现对某条生产线上随机抽取的100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.
(1)求图中的值,并求综合评分的中位数;
(2)用样本估计总体,视频率作为概率,在该条生产线中随机抽取3个产品,求所抽取的产品中一等品数的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,已知椭圆的离心率为,且右焦点到右准线的距离为1.过轴上一点 为常数,且的直线与椭圆交于两点,与交于点,是弦的中点,直线与交于点.
(1)求椭圆的标准方程;
(2)试判断以为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法正确的是__________(填序号)
(1)已知相关变量满足回归方程,若变量增加一个单位,则平均增加个单位
(2)若为两个命题,则“”为假命题是“”为假命题的充分不必要条件
(3)若命题,,则,
(4)已知随机变量,若,则
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,某公园内有两条道路,,现计划在上选择一点,新建道路,并把所在的区域改造成绿化区域.已知, .
(1)若绿化区域的面积为1,求道路的长度;
(2)若绿化区域改造成本为10万元/,新建道路成本为10万元/.设(),当为何值时,该计划所需总费用最小?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的中心在原点,焦点在坐标轴上,且经过,.
(Ⅰ)求椭圆的标准方程和离心率;
(Ⅱ)四边形的四个顶点都在椭圆上,且对角线,过原点,若,求证:四边形的面积为定值,并求出此定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com