科目: 来源: 题型:
【题目】已知圆,点,点是圆上的一个动点,点分别在线段上,且满足,.
(1)求点的轨迹方程;
(2)过点作斜率为的直线与点的轨迹相交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形?如果存在,求出的取值范围;如果不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题满分12分)已知点为抛物线的焦点,点在抛物线上,且.
(Ⅰ)求抛物线的方程;
(Ⅱ)已知点,延长交抛物线于点,证明:以点为圆心且与直线相切的圆,必与直线相切.
查看答案和解析>>
科目: 来源: 题型:
【题目】随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,图2是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级, 一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是( )
①1月至8月空气合格天数超过20天的月份有5个
②第二季度与第一季度相比,空气达标天数的比重下降了
③8月是空气质量最好的一个月
④6月份的空气质量最差
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目: 来源: 题型:
【题目】对由个、个和个排成的行,在其下面重新定义一行(比上面一行少一个字母).若其头上的两个字母不同,则在该位置写上第三个字母;若其头上的两个字母相同,则在该位置写上该字母.对新得到的行重复上面的操作,直到变为一个字母为止.图给出了的一个例子.
求所有的正整数,使得对任意的初始排列,经上述操作后,所得到的三角形的三个顶点上的字母要么全相同,要么两两不同.
查看答案和解析>>
科目: 来源: 题型:
【题目】高血压高血糖和高血脂统称“三高”.如图是西南某地区从2010年至2016年患“三高”人数y(单位:千人)的折线图.
(1)由折线图看出,可用线性回归模型拟合与的关系,请求出相关系数(精确到0.01)并加以说明;
(2)建立关于的回归方程,预测2018年该地区患“三高”的人数.
参考数据:,,,.参考公式:相关系数 回归方程 中斜率和截距的最小二乘法估计公式分别为:.
查看答案和解析>>
科目: 来源: 题型:
【题目】某班50位学生周考数学成绩的频率分布直方图如图所示,其中成绩分组区间是:、、、、、.
(1)求图中的矩形高的值,并估计这50人周考数学的平均成绩;
(2)根据直方图求出这50人成绩的众数和中位数(精确到0.1);
(3)从成绩不低于80分的学生中随机选取2人,该2人中成绩不低于90分的人数记为,求的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com