相关习题
 0  263194  263202  263208  263212  263218  263220  263224  263230  263232  263238  263244  263248  263250  263254  263260  263262  263268  263272  263274  263278  263280  263284  263286  263288  263289  263290  263292  263293  263294  263296  263298  263302  263304  263308  263310  263314  263320  263322  263328  263332  263334  263338  263344  263350  263352  263358  263362  263364  263370  263374  263380  263388  266669 

科目: 来源: 题型:

【题目】已知函数

1)讨论函数的单调性;

2)函数有两个极值点,且,求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数(其中为自然对数的底数,).

(1)若求函数的单调区间

(2)证明:当函数有两个零点,且.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市为了增强民众防控病毒的意识,举行了“预防新冠病毒知识竞赛”网上答题,随机抽取人,答题成绩统计如图所示.

1)由直方图可认为答题者的成绩服从正态分布,其中分别为答题者的平均成绩和成绩的方差,那么这名答题者成绩超过分的人数估计有多少人?(同一组中的数据用该组的区间中点值作代表)

2)如果成绩超过分的民众我们认为是“防御知识合格者”,用这名答题者的成绩来估计全市的民众,现从全市中随机抽取人,“防御知识合格者”的人数为,求.(精确到

附:①;②,则;③.

查看答案和解析>>

科目: 来源: 题型:

【题目】在某企业中随机抽取了5名员工测试他们的艺术爱好指数和创新灵感指数,统计结果如下表(注:指数值越高素质越优秀):

1)求创新灵感指数关于艺术爱好指数的线性回归方程;

2)企业为提高员工的艺术爱好指数,要求员工选择音乐和绘画中的一种进行培训,培训音乐次数对艺术爱好指数的提高量为,培训绘画次数对艺术爱好指数的提高量为,其中为参加培训的某员工已达到的艺术爱好指数.艺术爱好指数已达到3的员工甲选择参加音乐培训,艺术爱好指数已达到4的员工乙选择参加绘画培训,在他们都培训了20次后,估计谁的创新灵感指数更高?

参考公式:回归方程中,.

参考数据:

查看答案和解析>>

科目: 来源: 题型:

【题目】根据以往的经验,某工程施工期间的降水量(单位:)对工期的影响如下表:

降水量

工期延误天数

历年气象资料表明,该工程施工期间降水量小于的概率分别为,求:

1)在降水量至少是的条件下,工期延误不超过天的概率;

2)工期延误天数的均值与方差.

查看答案和解析>>

科目: 来源: 题型:

【题目】2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.

方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.

方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.

(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;

(2)若某顾客获得抽奖机会.

①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;

②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学高三年级在返校复学后,为了做好疫情防护工作,一位防疫督察员要将2盒完全相同的口罩和3盒完全相同的普通医用口罩全部分配给3个不同的班,每个班至少分得一盒,则不同的分法种数是(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了调查某校高二学生的身高是否与性别有关,随机调查该校64名高二学生,得到2×2列联表如表:

男生

女生

总计

身高低于170cm

8

24

32

身高不低于170cm

26

6

32

总计

34

30

64

附:K2

PK2k0

 0.050

 0.010

 0.001

 k0

3.841

6.635

 10.828

由此得出的正确结论是(

A.在犯错误的概率不超过0.01的前提下,认为“身高与性别无关”

B.在犯错误的概率不超过0.01的前提下,认为“身高与性别有关”

C.99.9%的把握认为“身高与性别无关”

D.99.9%的把握认为“身高与性别有关”

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在多面体中,四边形为矩形,直线与平面所成的角为.

(1)求证:直线平面

(2)点在线段上,且,求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】抛掷一个质地均匀的骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“不小于5的点数出现”,则一次试验中,事件A或事件B至少有一个发生的概率为(

A.B.C.D.

查看答案和解析>>

同步练习册答案