相关习题
 0  263203  263211  263217  263221  263227  263229  263233  263239  263241  263247  263253  263257  263259  263263  263269  263271  263277  263281  263283  263287  263289  263293  263295  263297  263298  263299  263301  263302  263303  263305  263307  263311  263313  263317  263319  263323  263329  263331  263337  263341  263343  263347  263353  263359  263361  263367  263371  263373  263379  263383  263389  263397  266669 

科目: 来源: 题型:

【题目】已知椭圆的离心率是椭圆上一点.

1)求椭圆的方程;

2)若直线的斜率为,且直线交椭圆两点,点关于原点的对称点为,点是椭圆上一点,判断直线的斜率之和是否为定值,如果是,请求出此定值,如果不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司为了鼓励运动提高所有用户的身体素质,特推出一款运动计步数的软件,所有用户都可以通过每天累计的步数瓜分红包,大大增加了用户走步的积极性,所以该软件深受广大用户的欢迎.该公司为了研究日平均走步数和性别是否有关,统计了20191月份所有用户的日平均步数,规定日平均步数不少于8000的为运动达人,步数在8000以下的为非运动达人,采用按性别分层抽样的方式抽取了100个用户,得到如下列联表:

运动达人

非运动达人

总计

35

60

26

总计

100

1)(i)将列联表补充完整;

ii)据此列联表判断,能否有的把握认为日平均走步数和性别是否有关

2)从样本中的运动达人中抽取7人参加幸运抽奖活动,通过抽奖共产生2位幸运用户,求这2位幸运用户恰好男用户和女用户各一位的概率.

附:

查看答案和解析>>

科目: 来源: 题型:

【题目】下列关于命题的说法错误的是( )

A. 命题“若,则”的逆否命题为“若,则

B. ”是“函数在区间上为增函数”的充分不必要条件

C. 命题“,使得”的否定是“,均有

D. “若的极值点,则”的逆命题为真命题

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的方程为,曲线为参数,),在以原点为极点,轴正半轴为极轴的极坐标系中,曲线.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)若直线与曲线有公共点,且直线与曲线的交点恰好在曲线轴围成的区域(不含边界)内,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的右焦点为,上顶点为,直线的斜率为,且原点到直线的距离为.

(1)求椭圆的标准方程;

(2)若不经过点的直线与椭圆交于两点,且与圆相切.试探究的周长是否为定值,若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,当x>0时,.

1)求f(x)的解析式;

2)设x[1,2]时,函数,是否存在实数m使得g(x)的最小值为6,若存在,求m的取值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知甲、乙两名工人在同样条件下每天各生产100件产品,且每生产1件正品可获利20元,生产1件次品损失30元,甲,乙两名工人100天中出现次品件数的情况如表所示.

甲每天生产的次品数/件

0

1

2

3

4

对应的天数/天

40

20

20

10

10

乙每天生产的次品数/件

0

1

2

3

对应的天数/天

30

25

25

20

(1)将甲每天生产的次品数记为(单位:件),日利润记为(单位:元),写出的函数关系式;

(2)如果将统计的100天中产生次品量的频率作为概率,记表示甲、乙两名工人1天中各自日利润不少于1950元的人数之和,求随机变量的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】为调研高中生的作文水平.在某市普通高中的某次联考中,参考的文科生与理科生人数之比为,且成绩分布在的范围内,规定分数在50以上(含50)的作文被评为“优秀作文”,按文理科用分层抽样的方法抽取400人的成绩作为样本,得到成绩的频率分布直方图,如图所示.其中构成以2为公比的等比数列.

1)求的值;

2)填写下面列联表,能否在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文理科”有关?

文科生

理科生

合计

获奖

6

不获奖

合计

400

3)将上述调查所得的频率视为概率,现从全市参考学生中,任意抽取2名学生,记“获得优秀作文”的学生人数为,求的分布列及数学期望.

附:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】某次数学测验共有12道选择题,每道题共有四个选项,且其中只有一个选项是正确的,评分标准规定:每选对1道题得5分,不选或选错得0分. 在这次数学测验中,考生甲每道选择题都按照规则作答,并能确定其中有9道题能选对;其余3道题无法确定正确选项,在这3道题中,恰有2道能排除两个错误选项,另1题只能排除一个错误选项. 若考生甲做这3道题时,每道题都从不能排除的选项中随机挑选一个选项作答,且各题作答互不影响.在本次测验中,考生甲选择题所得的分数记为

1)求的概率;

2)求的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】法国有个名人叫做布莱尔·帕斯卡,他认识两个赌徒,这两个赌徒向他提出一个问题,他们说,他们下赌金之后,约定谁先赢满5局,谁就获得全部赌金700法郎,赌了半天,甲赢了4局,乙赢了3局,时间很晚了,他们都不想再赌下去了.假设每局两赌徒输赢的概率各占,每局输赢相互独立,那么这700法郎如何分配比较合理(

A.400法郎,乙300法郎B.500法郎,乙200法郎

C.525法郎,乙175法郎D.350法郎,乙350法郎

查看答案和解析>>

同步练习册答案