科目: 来源: 题型:
【题目】(1)求证:正三角形各顶点到其外接圆上任一切线的距离之和为定值;
(2)猜想空间命题“正四面体各顶点到其外接球的任一切面的距离之和为定值”是否成立?证明你的结论.注:与球只有一个公共点的平面叫做球的切面,这个公共点叫做切点,切点与球心的连线垂直于切面.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列关于随机变量及分布的说法正确的是( )
A.抛掷均匀硬币一次,出现正面的次数是随机变量
B.某人射击时命中的概率为0.5,此人射击三次命中的次数服从两点分布
C.离散型随机变量的分布列中,随机变量取各个值的概率之和可以小于1
D.离散型随机变量的各个可能值表示的事件是彼此互斥的
查看答案和解析>>
科目: 来源: 题型:
【题目】求在图所示的的方格中“圈”的个数.在这里,一条封闭的折线叫做圈,如果这条折线的边均由方格的边组成,且折线经过的任意一个方格顶点都只与折线的两条边相连.
查看答案和解析>>
科目: 来源: 题型:
【题目】图是一个的方格(其中心的方格线已被划去).一只青蛙停在格处,从某一时刻起,青蛙每隔一秒钟就跳到与它所在方格有公共边的另一方格内,直至跳到格才停下..若青蛙经过每一个方格不超过一次,则青蛙的跳法总数为________.
查看答案和解析>>
科目: 来源: 题型:
【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,已知直线的参数方程是 (m>0,t为参数),曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)若直线与轴交于点,与曲线交于点,且,求实数的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
已知曲线的极坐标方程为.以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程为(为参数).
(1)求曲线的直角坐标方程和直线的普通方程;
(2)求直线被曲线所截得的弦长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知在区间上是增函数.
(1)求实数的值组成的集合;
(2)设关于的方程的两个非零实根为、.试问:是否存在实数,使得不等式对任意及 恒成立?若存在,求的取值范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com