相关习题
 0  263392  263400  263406  263410  263416  263418  263422  263428  263430  263436  263442  263446  263448  263452  263458  263460  263466  263470  263472  263476  263478  263482  263484  263486  263487  263488  263490  263491  263492  263494  263496  263500  263502  263506  263508  263512  263518  263520  263526  263530  263532  263536  263542  263548  263550  263556  263560  263562  263568  263572  263578  263586  266669 

科目: 来源: 题型:

【题目】如图是某地区2012年至2018年生活垃圾无害化处理量(单位:万吨)的折线图.

注:年份代码分别表示对应年份.

1)由折线图看出,可用线性回归模型拟合的关系,请用相关系数线性相关较强)加以说明;

2)建立的回归方程(系数精确到0.01),预测2019年该区生活垃圾无害化处理量.

(参考数据).

(参考公式)相关系数,在回归方程中斜率和截距的最小二乘估计公式分别为:.

查看答案和解析>>

科目: 来源: 题型:

【题目】,已知MBC的中点.

(1),求向量与向量的夹角的余弦值;

(2)O是线段AM上任意一点,,求的最小值;

(3)若点P是边BC上的一点,,求的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系,长度为2的线段EF的两端点EF分别在两坐标轴上运动.

(1)求线段EF的中点G的轨迹C的方程;

(2)设轨迹C轴交于两点,P是轨迹C上异于的任意一点,直线交直线M,直线交直线N,求证:MN为直径的圆C总过定点,并求出定点坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知集合A={1,2,3,4,5,6,7,8,9),在集合A中任取三个元素,分别作为一个三位数的个位数,十位数和百位数,记这个三位数为a,现将组成a的三个数字按从小到大排成的三位数记为Ia),按从大到小排成的三位数记为Da)(例如a=219,则Ia)=129,Da)=921),阅读如图所示的程序框图,运行相应的程序,任意输入一个a,则输出b的值为( )

A. 792 B. 693 C. 594 D. 495

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学2018年的高考考生人数是2015年高考考生人数的倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:

则下列结论正确的是  

A. 与2015年相比,2018年一本达线人数减少

B. 与2015年相比,2018年二本达线人数增加了

C. 2015年与2018年艺体达线人数相同

D. 与2015年相比,2018年不上线的人数有所增加

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数为常数,且).

(1)若当时,函数的图象有且只要一个交点,试确定自然数的值,使得(参考数值);

(2)当时,证明:(其中为自然对数的底数).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M: 及其上一点A24

1)设圆Nx轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;

2)设平行于OA的直线l与圆M相交于BC两点,且BC=OA,求直线l的方程;

3)设点Tt,o)满足:存在圆M上的两点PQ,使得,求实数t的取值范围。

查看答案和解析>>

科目: 来源: 题型:

【题目】已知双曲线为焦点,且过点

1)求双曲线与其渐近线的方程

2)若斜率为1的直线与双曲线相交于两点,且为坐标原点),求直线的方程

查看答案和解析>>

科目: 来源: 题型:

【题目】椭圆C过点M(2,0),且右焦点为F(1,0),过F的直线l与椭圆C相交于AB两点.设点P(4,3),记PAPB的斜率分别为k1k2

(1)求椭圆C的方程;

(2)如果直线l的斜率等于-1,求出k1k2的值;

(3)探讨k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆)的左焦点为,点为椭圆上任意一点,且的最小值为,离心率为.

(1)求椭圆的方程;

(2)设O为坐标原点,若动直线与椭圆交于不同两点都在轴上方),且.

(i)当为椭圆与轴正半轴的交点时,求直线的方程;

(ii)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案