科目: 来源: 题型:
【题目】已知关于x,y的方程x2+y2﹣4x+4y+m=0表示一个圆.
(1)求实数m的取值范围;
(2)若m=4,过点P(0,2)的直线l与圆相切,求出直线l的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱柱中,底面ABC,是边长为2的正三角形,,E,F分别为BC,的中点.
1求证:平面平面;
2求三棱锥的体积;
3在线段上是否存在一点M,使直线MF与平面没有公共点?若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】北京地铁八通线西起四惠站,东至土桥站,全长,共设13座车站目前八通线执行2014年12月28日制订的计价标准,各站间计程票价单位:元如下:
四惠 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | |
四惠东 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | ||
高碑店 | 3 | span>3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | |||
传媒大学 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | ||||
双桥 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | |||||
管庄 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | ||||||
八里桥 | 3 | 3 | 3 | 3 | 4 | 4 | |||||||
通州北苑 | 3 | 3 | 3 | 3 | 3 | ||||||||
果园 | 3 | 3 | 3 | 3 | |||||||||
九棵树 | 3 | 3 | 3 | ||||||||||
梨园 | 3 | 3 | |||||||||||
临河里 | 3 | ||||||||||||
土桥 | |||||||||||||
四惠 | 四惠东 | 高碑店 | 传媒大学 | 双桥 | 管庄 | 八里桥 | 通州北苑 | 果园 | 九棵树 | 梨园 | 临河里 | 土桥 |
1在13座车站中任选两个不同的车站,求两站间票价为5元的概率;
2在土桥出站口随机调查了n名下车的乘客,将在八通线各站上车情况统计如下表:
上车站点 | 通州北苑果园九棵树 梨园临河里 | 双桥管庄八里桥 | 四惠四惠东高碑店 传媒大学 |
频率 | a | b | |
人数 | c | 15 | 25 |
求a,b,c,n的值,并计算这n名乘客乘车平均消费金额;
3某人从四惠站上车乘坐八通线到土桥站,中途任选一站出站一次,之后再从该站乘车若想两次乘车花费总金额最少,可以选择中途哪站下车?写出一个即可
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点,现将△AFD沿AF折起,使平面ABD⊥平面ABC,则二面角D﹣AF﹣B的平面角余弦值的取值范围是_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知三棱锥A﹣BCD的所有棱长均相等,E为DC的中点,若点P为AC中点,则直线PE与平面BCD所成角的正弦值为_____,若点Q在棱AC所在直线上运动,则直线QE与平面BCD所成角正弦值的最大值为_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆:过点,且椭圆的离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)斜率为的直线交椭圆于,两点,且.若直线上存在点P,使得是以为顶角的等腰直角三角形,求直线的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为;
当P是原点时,定义P的“伴随点“为它自身,平面曲线C上所有点的“伴随点”所构成的曲线定义为曲线C的“伴随曲线”.现有下列命题:
①若点A的“伴随点”是点,则点的“伴随点”是点A
②单位圆的“伴随曲线”是它自身;
③若曲线C关于x轴对称,则其“伴随曲线”关于y轴对称;
④一条直线的“伴随曲线”是一条直线.
其中的真命题是_____________(写出所有真命题的序列).
查看答案和解析>>
科目: 来源: 题型:
【题目】已知过点的动直线与圆:相交于、两点,是中点,与直线:(为常数)相交于点.
(1)求证:当与垂直时,必过圆心;
(2)当时,求直线的方程;
(3)当直线的倾斜角变化时,探索的值是否为常数?若是,求出该常数;若不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平行四边形中,,,.
(1)求点的坐标;
(2)过点的直线与平行四边形围成的区域(包括边界)有公共点,求直线的倾斜角的取值范围;
(3)对角线所在的直线与圆:没有交点,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com