科目: 来源: 题型:
【题目】图1是由矩形和菱形组成的一个平面图形,其中, ,将其沿折起使得与重合,连结,如图2.
(1)证明图2中的四点共面,且平面平面;
(2)求图2中的四边形的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知椭圆的离心率是,一个顶点是.
(Ⅰ)求椭圆的方程;
(Ⅱ)设,是椭圆上异于点的任意两点,且.试问:直线是否恒过一定点?若是,求出该定点的坐标;若不是,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在多面体中,平面平面.四边形为正方形,四边形为梯形,且,是边长为1的等边三角形,M为线段中点,.
(1)求证:;
(2)求直线与平面所成角的正弦值;
(3)线段上是否存在点N,使得直线平面?若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成两组,每组100只,其中组小鼠给服甲离子溶液,组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:
记为事件:“乙离子残留在体内的百分比不低于”,根据直方图得到的估计值为.
(1)求乙离子残留百分比直方图中的值;
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,PD=DC,E是PC的中点.
(1)证明:平面PAB⊥平面PAD;
(2)求二面角P﹣AB﹣D的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】若函数y=f(x)在区间D上是增函数,且函数y=在区间D上是减函数,则称函数f(x)是区间D上的“H函数”.对于命题:
①函数f(x)=-x+是区间(0,1)上的“H函数”;
②函数g(x)=是区间(0,1)上的“H函数”.下列判断正确的是( )
A. 和均为真命题 B. 为真命题,为假命题
C. 为假命题,为真命题 D. 和均为假命题
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆: ,圆: 的圆心在椭圆上,点到椭圆的右焦点的距离为.
(1)求椭圆的标准方程;
(2)过点作互相垂直的两条直线,且交椭圆于两点,直线交圆于, 两点,且为的中点,求面积的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知, 是双曲线的左,右焦点,点在双曲线上,且,则下列结论正确的是( )
A. 若,则双曲线离心率的取值范围为
B. 若,则双曲线离心率的取值范围为
C. 若,则双曲线离心率的取值范围为
D. 若,则双曲线离心率的取值范围为
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com