相关习题
 0  263483  263491  263497  263501  263507  263509  263513  263519  263521  263527  263533  263537  263539  263543  263549  263551  263557  263561  263563  263567  263569  263573  263575  263577  263578  263579  263581  263582  263583  263585  263587  263591  263593  263597  263599  263603  263609  263611  263617  263621  263623  263627  263633  263639  263641  263647  263651  263653  263659  263663  263669  263677  266669 

科目: 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行道时,应当减速慢行;遇行人正在通过人行道,应当停车让行,俗称“礼让斑马线”, 《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员“礼让斑马线”行为统计数据:

月份

1

2

3

4

5

违章驾驶员人数

120

105

100

90

85

(1)请利用所给数据求违章人数与月份之间的回归直线方程

(2)预测该路口9月份的不“礼让斑马线”违章驾驶员人数.

参考公式: .

参考数据: .

查看答案和解析>>

科目: 来源: 题型:

【题目】已知焦点在x轴上的椭圆C1的长轴长为8,短半轴为2,抛物线C2的顶点在原点且焦点为椭圆C1的右焦点.

(1)求抛物线C2的标准方程;

(2)过(10)的两条相互垂直的直线与抛物线C2有四个交点,求这四个点围成四边形的面积的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在圆锥中,已知高,底面圆的半径为4,为母线的中点;根据圆锥曲线的定义,下列四个图中的截面边界曲线分别为圆、椭圆、双曲线及抛物线,下面四个命题,正确的个数为( )

①圆的面积为

②椭圆的长轴为

③双曲线两渐近线的夹角为

④抛物线中焦点到准线的距离为.

A. 1个B. 2个C. 3个D. 4个

查看答案和解析>>

科目: 来源: 题型:

【题目】某班从4位男生和3位女生志愿者选出4人参加校运会的点名签到工作,则选出的志愿者中既有男生又有女生的概率的是__________.(结果用最简分数表示)

查看答案和解析>>

科目: 来源: 题型:

【题目】在四棱锥P—ABCD中,侧面PCD⊥底面ABCDPD⊥CDEPC中点,底面ABCD是直角梯形,AB∥CD∠ADC=90°AB=AD=PD=1CD=2

)求证:BE∥平面PAD

)求证:BC⊥平面PBD

)设Q为侧棱PC上一点,试确定的值,使得二面角Q—BD—P45°

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,设点集.从集合Mn中任取两个不同的点,用随机变量X表示它们之间的距离.

1)当n=1时,求X的概率分布;

2)对给定的正整数nn≥3),求概率PXn)(用n表示).

查看答案和解析>>

科目: 来源: 题型:

【题目】图所示,抛物线轴所围成的区域是一块等待开垦的土地,现计划在该区域内围出一块矩形地块ABCD作为工业用地,其中A、B在抛物线上,C、D在轴上.已知工业用地每单位面积价值为,其它的三个边角地块每单位面积价值元.

(1)等待开垦土地的面积;

(2)如何确定点C的位置,才能使得整块土地总价值最大.

查看答案和解析>>

科目: 来源: 题型:

【题目】定义首项为1且公比为正数的等比数列为“M-数列”.

1)已知等比数列{an}满足:,求证:数列{an}为“M-数列”;

2)已知数列{bn}满足:,其中Sn为数列{bn}的前n项和.

①求数列{bn}的通项公式;

②设m为正整数,若存在“M-数列”{cn},对任意正整数k,当km时,都有成立,求m的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥ABAB是圆O的直径).规划在公路l上选两个点PQ,并修建两段直线型道路PBQA.规划要求:线段PBQA上的所有点到点O的距离均不小于圆O的半径.已知点AB到直线l的距离分别为ACBDCD为垂足),测得AB=10AC=6BD=12(单位:百米).

1)若道路PB与桥AB垂直,求道路PB的长;

2)在规划要求下,PQ中能否有一个点选在D处?并说明理由;

3)对规划要求下,若道路PBQA的长度均为d(单位:百米).求当d最小时,PQ两点间的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】pfx)=1+ax,在(02]fx≥0恒成立,q函数gx)=ax+2lnx在其定义域上存在极值.

(1)若p为真命题,求实数a的取值范围;

(2)如果pq为真命题,pq为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案