【题目】如图所示,抛物线
与
轴所围成的区域是一块等待开垦的土地,现计划在该区域内围出一块矩形地块ABCD作为工业用地,其中A、B在抛物线上,C、D在
轴上.已知工业用地每单位面积价值为
元
,其它的三个边角地块每单位面积价值
元.
(1)求等待开垦土地的面积;
(2)如何确定点C的位置,才能使得整块土地总价值最大.
![]()
【答案】(1)
;(2)点C的坐标为
.
【解析】
试题分析:(1)由于等待开垦土地是由曲线
与x轴围成的,求出曲线与x轴的交点坐标,再用定积分就可求出此块土地的面积;(2)既然要确定点C的位置,使得整块土地总价值最大,那我们只需先设出点C的坐标为(x,0),然后含x的代数式表示出矩形地块ABCD,进而结合(1)的结果就可表示出其它的三个边角地块的面积,从而就能将整块土地总价值表示成为x的函数,再利用导数求此函数的最大值即可.
试题解析:(1)由于曲线
与x轴的交点坐标为(-1,0)和(1,0),所以所求面积S=
,
故等待开垦土地的面积为
3分
(2)设点C的坐标为
,则点B
其中
,
∴
5分
∴土地总价值
7分
由
得
9分
并且当
时,![]()
故当
时,y取得最大值. 12分
答:当点C的坐标为
时,整个地块的总价值最大. 13分
科目:高中数学 来源: 题型:
【题目】以“你我中国梦,全民建小康”为主题“社会主义核心价值观”为主线,为了解
、
两个地区的观众对2018年韩国平昌冬奥会准备工作的满意程度,对
、
地区的
名观众进行统计,统计结果如下:
非常满意 | 满意 | 合计 | |
|
|
| |
|
|
| |
合计 |
在被调查的全体观众中随机抽取
名“非常满意”的人是
地区的概率为
,且
.
(1)现从
名观众中用分层抽样的方法抽取
名进行问卷调查,则应抽取“满意”的
、
地区的人数各是多少?
(2)在(1)抽取的“满意”的观众中,随机选出
人进行座谈,求至少有两名是
地区观众的概率?
(3)完成上述表格,并根据表格判断是否有
的把握认为观众的满意程度与所在地区有关系?
附:
|
|
|
|
|
|
|
|
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,点
在椭圆
:
上.若点
,
,且
.
(1)求椭圆
的离心率;
(2)设椭圆
的焦距为4,
,
是椭圆
上不同的两点,线段
的垂直平分线为直线
,且直线
不与
轴重合.
①若点
,直线
过点
,求直线
的方程;
② 若直线
过点
,且与
轴的交点为
,求
点横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/小时)与汽车的平均速度v(千米/小时)之间的函数关系为:
(
).
(1)在该时段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?(保留分数形式)
(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范用内?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经市场调查,新街口某新开业的商场在过去一个月内(以30天计),顾客人数
(千人)与时间
(天)的函数关系近似满足
(
),人均消费
(元)与时间
(天)的函数关系近似满足![]()
(1)求该商场的日收益
(千元)与时间
(天)(
,
)的函数关系式;
(2)求该商场日收益的最小值(千元).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着智能手机的普及,网络搜题软件走进了生活,有教育工作者认为,网搜答案可以起到帮助人们学习的作用,但对多数学生来讲,过度网搜答案容易养成依赖心理,对学习能力造成损害.为了了解学生网搜答案的情况,某学校对学生一月内进行网搜答案的次数进行了问卷调查,并从参与调查的学生中抽取了男、女生各100人进行抽样分析,制成如下频率分布直方图:
![]()
记事件“男生1月内网搜答案次数不高于30次”为
,根据频率分布直方图得到
的估计值为0.65
(1)求
的值;
(2)若一学生在1月内网搜答案次数超过50次,则称该学生为“依赖型”,现从样本内的“依赖型”学生中,抽取3人谈话,求抽取的女生人数X的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com