科目: 来源: 题型:
【题目】设数列{an} 满足a1=a,=can+1﹣c(n∈N*),其中a、c为实数,且c≠0.
(1)求数列{an} 的通项公式;
(2)设a=,c=,bn=n(1﹣an)(n∈N*),求数列 {bn}的前n项和Sn.
查看答案和解析>>
科目: 来源: 题型:
【题目】如果数列对于任意,都有,其中为常数,则称数列是“间等差数列”,为“间公差”.若数列满足,,.
(1)求证:数列是“间等差数列”,并求间公差;
(2)设为数列的前n项和,若的最小值为-153,求实数的取值范围;
(3)类似地:非零数列对于任意,都有,其中为常数,则称数列是“间等比数列”,为“间公比”.已知数列中,满足,,,试问数列是否为“间等比数列”,若是,求最大的整数使得对于任意,都有;若不是,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】设椭圆,点为其右焦点,过点的直线与椭圆相交于点,.
(1)当点在椭圆上运动时,求线段的中点的轨迹方程;
(2)如图1,点的坐标为,若点是点关于轴的对称点,求证:点,,共线;
(3)如图2,点是直线上的任意一点,设直线,,的斜率分别为,,,求证,,成等差数列.
查看答案和解析>>
科目: 来源: 题型:
【题目】某避暑山庄拟对一个半径为1百米的圆形地块(如图)进行改造,拟在该地块上修建一个等腰梯形,其中,,圆心在梯形内部,设.当该游泳池的面积与周长之比最大时为“最佳游泳池”.
(1)求梯形游泳池的面积关于的函数关系式,并指明定义域;
(2)求当该游泳池为“最佳游泳池”时的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义在R上的偶函数f(x),且对任意实数x都有f(x+2)=f(x),当x∈[0,1]时,f(x)=x2,若在区间[﹣3,3]内,函数g(x)=f(x)﹣kx﹣3k有6个零点,则实数k的取值范围为__.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线的方程为.
(1)当时,试确定曲线的形状及其焦点坐标;
(2)若直线交曲线于点、,线段中点的横坐标为,试问此时曲线上是否存在不同的两点、关于直线对称?
(3)当为大于1的常数时,设是曲线上的一点,过点作一条斜率为的直线,又设为原点到直线的距离,分别为点与曲线两焦点的距离,求证是一个定值,并求出该定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】现有一长为100码,宽为80码,球门宽为8码的矩形足球运动场地,如图所示,其中是足球场地边线所在的直线,球门处于所在直线的正中间位置,足球运动员(将其看做点)在运动场上观察球门的角称为视角.
(1)当运动员带球沿着边线奔跑时,设到底线的距离为码,试求当为何值时最大;
(2)理论研究和实践经验表明:张角越大,射门命中率就越大.现假定运动员在球场都是沿着垂直于底线的方向向底线运球,运动到视角最大的位置即为最佳射门点,以的中点为原点建立如图所示的直角坐标系,求在球场区域内射门到球门的最佳射门点的轨迹.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆:()的左,右顶点分别为,,长轴长为,且经过点.
(1)求椭圆的标准方程;
(2)若为椭圆上异于,的任意一点,证明:直线,的斜率的乘积为定值;
(3)已知两条互相垂直的直线,都经过椭圆的右焦点,与椭圆交于,和,四点,求四边形面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com