科目: 来源: 题型:
【题目】设数列{an} 满足a1=a,
=can+1﹣c(n∈N*),其中a、c为实数,且c≠0.
(1)求数列{an} 的通项公式;
(2)设a=
,c=
,bn=n(1﹣an)(n∈N*),求数列 {bn}的前n项和Sn.
查看答案和解析>>
科目: 来源: 题型:
【题目】如果数列
对于任意
,都有
,其中
为常数,则称数列
是“间等差数列”,
为“间公差”.若数列
满足
,
,
.
(1)求证:数列
是“间等差数列”,并求间公差
;
(2)设
为数列
的前n项和,若
的最小值为-153,求实数
的取值范围;
(3)类似地:非零数列
对于任意
,都有
,其中
为常数,则称数列
是“间等比数列”,
为“间公比”.已知数列
中,满足
,
,
,试问数列
是否为“间等比数列”,若是,求最大的整数
使得对于任意
,都有
;若不是,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】设椭圆
,点
为其右焦点,过点
的直线与椭圆
相交于点
,
.
![]()
(1)当点
在椭圆
上运动时,求线段
的中点
的轨迹方程;
(2)如图1,点
的坐标为
,若点
是点
关于
轴的对称点,求证:点
,
,
共线;
(3)如图2,点
是直线
上的任意一点,设直线
,
,
的斜率分别为
,
,
,求证
,
,
成等差数列.
查看答案和解析>>
科目: 来源: 题型:
【题目】某避暑山庄拟对一个半径为1百米的圆形地块(如图)进行改造,拟在该地块上修建一个等腰梯形
,其中
,
,圆心
在梯形内部,设
.当该游泳池的面积与周长之比最大时为“最佳游泳池”.
![]()
(1)求梯形游泳池的面积
关于
的函数关系式,并指明定义域;
(2)求当该游泳池为“最佳游泳池”时
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义在R上的偶函数f(x),且对任意实数x都有f(x+2)=f(x),当x∈[0,1]时,f(x)=x2,若在区间[﹣3,3]内,函数g(x)=f(x)﹣kx﹣3k有6个零点,则实数k的取值范围为__.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线
的方程为
.
(1)当
时,试确定曲线
的形状及其焦点坐标;
(2)若直线
交曲线
于点
、
,线段
中点的横坐标为
,试问此时曲线
上是否存在不同的两点
、
关于直线
对称?
(3)当
为大于1的常数时,设
是曲线
上的一点,过点
作一条斜率为
的直线
,又设
为原点到直线
的距离,
分别为点
与曲线
两焦点的距离,求证
是一个定值,并求出该定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】现有一长为100码,宽为80码,球门宽为8码的矩形足球运动场地,如图所示,其中
是足球场地边线所在的直线,球门
处于所在直线的正中间位置,足球运动员(将其看做点
)在运动场上观察球门的角
称为视角.
![]()
(1)当运动员带球沿着边线
奔跑时,设
到底线的距离为
码,试求当
为何值时
最大;
(2)理论研究和实践经验表明:张角
越大,射门命中率就越大.现假定运动员在球场都是沿着垂直于底线的方向向底线运球,运动到视角最大的位置即为最佳射门点,以
的中点为原点建立如图所示的直角坐标系,求在球场区域
内射门到球门
的最佳射门点的轨迹.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
:
(
)的左,右顶点分别为
,
,长轴长为
,且经过点
.
(1)求椭圆
的标准方程;
(2)若
为椭圆
上异于
,
的任意一点,证明:直线
,
的斜率的乘积为定值;
(3)已知两条互相垂直的直线
,
都经过椭圆
的右焦点
,与椭圆
交于
,
和
,
四点,求四边形
面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com