科目: 来源: 题型:
【题目】已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线相切.
(1)求圆的方程;
(2)若直线与圆相交于A,B两点,是否存在实数a,使得过点的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的左、右焦点为别为F1、F2,且过点和.
(1)求椭圆的标准方程;
(2)如图,点A为椭圆上一位于x轴上方的动点,AF2的延长线与椭圆交于点B,AO的延长线与椭圆交于点C,求△ABC面积的最大值,并写出取到最大值时直线BC的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】经济订货批量模型,是目前大多数工厂、企业等最常采用的订货方式,即某种物资在单位时间的需求量为某常数,经过某段时间后,存储量消耗下降到零,此时开始订货并随即到货,然后开始下一个存储周期,该模型适用于整批间隔进货、不允许缺货的存储问题,具体如下:年存储成本费(元)关于每次订货(单位)的函数关系,其中为年需求量,为每单位物资的年存储费,为每次订货费. 某化工厂需用甲醇作为原料,年需求量为6000吨,每吨存储费为120元/年,每次订货费为2500元.
(1)若该化工厂每次订购300吨甲醇,求年存储成本费;
(2)每次需订购多少吨甲醇,可使该化工厂年存储成本费最少?最少费用为多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知四棱锥的底面为直角梯形,,°,底面,且,是的中点.
(1)证明:平面平面;
(2)求与所成角的余弦值;
(3)求平面与平面所成二面角(锐角)的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面底面ABCD,且,若E,F分别为PC,BD的中点.
(I)求证:EF//平面PAD;
(II)求三棱锥F-DEC的体积;
(III)在线段CD上是否存在一点G,使得平面平面PDC?若存在,请说明其位置,并加以证明;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某网站针对“2014年法定节假日调休安排”展开的问卷调查,提出了A、B、C三种放假方案,调查结果如下:
支持A方案 | 支持B方案 | 支持C方案 | |
35岁以下 | 200 | 400 | 800 |
35岁以上(含35岁) | 100 | 100 | 400 |
(1)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从“支持A方案”的人中抽取了6人,求n的值;
(2)在“支持B方案”的人中,用分层抽样的方法抽取5人看作一个总体,从这5人中任意选取2人,求恰好有1人在35岁以上(含35岁)的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,E是PC的中点,底面ABCD为矩形,AB=4,AD=2,PA=PD,且平面PAD⊥平面ABCD,平面ABE与棱PD交于点F.
(1)求证:EF∥平面PAB;
(2)若PB与平面ABCD所成角的正弦值为,求二面角P-AE-B的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥C的底面是正方形,PA⊥平面ABCD,PA=2,∠PDA=45°,点E、F分别为棱AB、PD的中点.
(1)求证:AF∥平面PEC
(2)求证:平面PCD⊥平面PEC;
(3)求三棱锥C-BEP的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com