相关习题
 0  263780  263788  263794  263798  263804  263806  263810  263816  263818  263824  263830  263834  263836  263840  263846  263848  263854  263858  263860  263864  263866  263870  263872  263874  263875  263876  263878  263879  263880  263882  263884  263888  263890  263894  263896  263900  263906  263908  263914  263918  263920  263924  263930  263936  263938  263944  263948  263950  263956  263960  263966  263974  266669 

科目: 来源: 题型:

【题目】给出下列说法:

1)命题的否定形式是

2)已知,则

3)已知回归直线的斜率的估计值是2,样本点的中心为,则回归直线方程为

4)对分类变量的随机变量的观测值来说,越小,判断有关系的把握越大;

5)若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变.

其中正确说法的个数为(

A.2B.3C.4D.5

查看答案和解析>>

科目: 来源: 题型:

【题目】部分与整体以某种相似的方式呈现称为分形.谢尔宾斯基三角形是一种分形,由波兰数学家谢尔宾斯基1915年提出.具体操作是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形,如图.

现在上述图(3)中随机选取一个点,则此点取自阴影部分的概率为_________.

查看答案和解析>>

科目: 来源: 题型:

【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是( ).

注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.

A. 互联网行业从业人员中90后占一半以上

B. 互联网行业中从事技术岗位的人数超过总人数的20%

C. 互联网行业中从事运营岗位的人数90后比80前多

D. 互联网行业中从事技术岗位的人数90后比80后多

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数()是奇函数.

(1)求实数的值;

(2)用函数单调性的定义证明函数上是增函数;

(3)对任意的,若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司制定了一个激励销售人员的奖励方案:对于每位销售人员,均以10万元为基数,若销售利润没超出这个基数,则可获得销售利润的5%的奖金;若销售利润超出这个基数(超出的部分是a万元),则可获得万元的奖金.记某位销售人员获得的奖金为y(单位:万元),其销售利润为x(单位:万元).

(1)写出这位销售人员获得的奖金y与其销售利润x之间的函数关系式;

(2)如果这位销售人员获得了万元的奖金,那么他的销售利润是多少万元?

查看答案和解析>>

科目: 来源: 题型:

【题目】为了调查生活规律与患胃病是否与有关,某同学在当地随机调查了20030岁以上的人,并根据调查结果制成了不完整的列联表如下:

不患胃病

患胃病

总计

生活有规律

60

40

生活无规律

60

100

总计

100

(1)补全列联表中的数据;

(2)用独性检验的基本原理,说明生活无规律与患胃病有关时,出错的概率不会超过多少?

参考公式和数表如下:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

/p>

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的短轴长为,且椭圆的一个焦点在圆上.

(1)求椭圆的方程;

(2)已知椭圆的焦距小于,过椭圆的左焦点的直线与椭圆相交于两点,若,求

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=x2mxn(mnR)满足f(0)=f(1),且方程xf(x)有两个相等的实数根.

(1)求函数f(x)的解析式;

(2)当x∈[0,3]时,求函数f(x)的值域.

查看答案和解析>>

科目: 来源: 题型:

【题目】以下是新兵训练时,某炮兵连周中炮弹对同一目标的命中的情况的柱状图:

(1)计算该炮兵连这周中总的命中频率,并确定第几周的命中频率最高;

(2)以(1)中的作为该炮兵连甲对同一目标的命中率,若每次发射相互独立,且炮兵甲发射次,记命中的次数为,求的方差;

(3)以(1)中的作为该炮兵连炮兵对同一目标的命中率,试问至少要用多少枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过(取

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率等于.

(1)求椭圆的标准方程;

(2)过椭圆的右焦点作直线交椭圆两点,交轴于点,若,求证为定值.

查看答案和解析>>

同步练习册答案