科目: 来源: 题型:
【题目】近年来,随着网络的普及,数码产品早已走进千家万户的生活,为了节约资源,促进资源循环利用,折旧产品回收行业得到迅猛发展,电脑使用时间越长,回收价值越低,某二手电脑交易市场对2018年回收的折旧电脑交易前使用的时间进行了统计,得到如图所示的频率分布直方图,在如图对时间使用的分组中,将使用时间落入各组的频率视为概率.
(1)若在该市场随机选取1个2018年成交的二手电脑,求其使用时间在上的概率;
(2)根据电脑交易市场往年的数据,得到如图所示的散点图及一些统计量的值,其中(单位:年)表示折旧电脑的使用时间,(单位:百元)表示相应的折旧电脑的平均交易价格.
由散点图判断,可采用作为该交易市场折旧电脑平均交易价格与使用年限的回归方程,若,,选用如下参考数据,求关于的回归方程,并预测在区间(用时间组的区间中点值代表该组的值)上折旧电脑的价格.
5.5 | 8.5 | 1.9 | 301.4 | 79.75 | 385 |
附:参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:,.参考数据:,,,,.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,四个点,,,中有3个点在椭圆:上.
(1)求椭圆的标准方程;
(2)过原点的直线与椭圆交于,两点(,不是椭圆的顶点),点在椭圆上,且,直线与轴、轴分别交于、两点,设直线,的斜率分别为,,证明:存在常数使得,并求出的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了解某班学生喜好体育运动是否与性别有关,对本班60人进行了问卷调查得到了如下的列联表:
喜好体育运动 | 不喜好体育运动 | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 60 |
已知按喜好体育运动与否,采用分层抽样法抽取容量为12的样本,则抽到喜好体育运动的人数为7.
(1)请将上面的列联表补充完整;
(2)能否在犯错误的概率不超过0.001的前提下认为喜好体育运动与性别有关?说明你的理由;
下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中)
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为,曲线的极坐标方程为,
(l)设为参数,若,求直线的参数方程;
(2)已知直线与曲线交于,设,且,求实数的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,四个点,,,中有3个点在椭圆:上.
(1)求椭圆的标准方程;
(2)过原点的直线与椭圆交于,两点(,不是椭圆的顶点),点在椭圆上,且,直线与轴、轴分别交于、两点,设直线,的斜率分别为,,证明:存在常数使得,并求出的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,.
(Ⅰ)令
①当时,求函数在点处的切线方程;
②若时,恒成立,求的所有取值集合与的关系;
(Ⅱ)记,是否存在,使得对任意的实数,函数在上有且仅有两个零点?若存在,求出满足条件的最小正整数,若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】抛物线有光学性质,即由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出,反之亦然.如图所示,今有抛物线,一光源在点处,由其发出的光线沿平行于抛物线的对称轴的方向射向抛物线上的点,反射后,又射向抛物线上的点,再反射后又沿平行于抛物线的对称轴方向射出,途中遇到直线上的点,再反射后又射回点.设,两点的坐标分别是,.
(1)证明:;
(2)若四边形是平行四边形,且点的坐标为.求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com