科目: 来源: 题型:
【题目】一个工厂在某年连续10个月每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据:
x | 1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 |
y | 2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通过画散点图,发现可用线性回归模型拟合y与x的关系,请用相关系数加以说明;
(2)①建立月总成本y与月产量x之间的回归方程;
②通过建立的y关于x的回归方程,估计某月产量为1.98万件时,此时产品的总成本为多少万元?
(均精确到0.001)
附注:①参考数据:
,
,
②参考公式:相关系数
,
回归方程
中斜率和截距的最小二乘估计公式分别为:
.
查看答案和解析>>
科目: 来源: 题型:
【题目】2018年11月5日至10日,首届中国国际进口博览会在国家会展中心(上海)举行,吸引过来58个“一带一路”沿线国家的超过1000多家企业参展,成为共建“一带一路”的又一个重要支撑。某企业为了参加这次盛会,提升行业竞争力,加大了科技投入;该企业连续6年来得科技投入
(百万元)与收益
(百万元)的数据统计如下:
![]()
根据散点图的特点,甲认为样本点分布在指数曲线
的周围,据此他对数据进行了一些初步处理,如下表:
![]()
其中
,
.
(1)(
)请根据表中数据,建立
关于
的回归方程(保留一位小数);
(
)根据所建立回归方程,若该企业想在下一年的收益达到2亿,则科技投入的费用至少要多少(其中
)?
(2)乙认为样本点分布在二次曲线
的周围,并计算得回归方程为
,以及该回归模型的相关指数
,试比较甲乙两位员工所建立的模型,谁的拟合效果更好.
附:对于一组数据
,
,……
,其回归直线方程
的斜率和截距的最小二乘估计分别为
,
,相关指数:
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
:
的离心率为
,左、右顶点分别为
、
,过左焦点的直线
交椭圆
于
、
两点(异于
、
两点),当直线
垂直于
轴时,四边形
的面积为6.
(1)求椭圆的方程;
(2)设直线
、
的交点为
;试问
的横坐标是否为定值?若是,求出定值;若不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了
个蜜柚进行测重,其质量分别在
,
,
,
,
,
(单位:克)中,其频率分布直方图如图所示,
![]()
(Ⅰ)已经按分层抽样的方法从质量落在
,
的蜜柚中抽取了
个,现从这
个蜜柚中随机抽取
个。求这
个蜜柚质量均小于
克的概率:
(Ⅱ)以各组数据的中间值代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有
个蜜柚等待出售,某电商提出了两种收购方案:
方案一:所有蜜柚均以
元/千克收购;
方案二:低于
克的蜜柚以
元/个收购,高于或等于
克的以
元/个收购.
请你通过计算为该村选择收益最好的方案.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,
,其中
为自然对数的底数.
(Ⅰ)当
时,求曲线
在点
处的切线方程;
(Ⅱ)求函数
的单调区间;
(Ⅲ)用
表示
,
中的较大者,记函数
.若函数
在
内恰有2个零点,求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
过点
,且短轴长为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
作
轴的垂线
,设点
为第四象限内一点且在椭圆
上(点
不在直线
上),点
关于
的对称点为
,直线
与椭圆
交于另一点
.设
为坐标原点,判断直线
与直线
的位置关系,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知动圆
与
轴相切,且与圆
:
外切;
(1)求动圆圆心
的轨迹
的方程;
(2)若直线
过定点
,且与轨迹
交于
、
两点,与圆
交于
、
两点,若点
到直线
的距离为
,求
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com