相关习题
 0  263964  263972  263978  263982  263988  263990  263994  264000  264002  264008  264014  264018  264020  264024  264030  264032  264038  264042  264044  264048  264050  264054  264056  264058  264059  264060  264062  264063  264064  264066  264068  264072  264074  264078  264080  264084  264090  264092  264098  264102  264104  264108  264114  264120  264122  264128  264132  264134  264140  264144  264150  264158  266669 

科目: 来源: 题型:

【题目】某品牌服装店为了庆祝开业两周年,特举办“你敢买,我就送”的回馈活动,规定店庆当日进店购买指定服装的消费者可参加游戏,赢取奖金,游戏分为以下两种:

游戏 1:参加该游戏赢取奖金的成功率为,成功后可获得元奖金;

游戏 2:参加该游戏赢取奖金的成功率为,成功后可得元奖金;

无论参与哪种游戏,未成功均没有收获,每人有且仅有一次机会,且每次游戏成功与否均互不影响,游戏结束后可到收银台领取奖金。

(Ⅰ)已知甲参加游戏 1,乙参加游戏 2,记甲与乙获得的总奖金为,若,求的值;

(Ⅱ)若甲、乙、丙三人都选择游戏 1或都选择游戏 2,问:他们选择何种规则,累计得到奖金的数学期望值最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】(1)求证:,其中

(2)求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在棱长为1的正四面体ABCD中,MN分别为棱ABCD的中点,一个平面分别与棱BCBDADAC交于EFGH,且MN⊥平面EFGH.给出下列六个结论:①ACBD,②AB//平面EFGH,③平面ABC⊥平面EFGH,④四边形EFGH的周长为定值;⑤四边形EFGH的面积有最大值;⑥四边形EFGH一定是矩形,其中,所有正确结论的序号是_____.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线方程为焦点,为抛物线准线上一点,为线段与抛物线的交点,定义:.

(1)当时,求

(2)证明:存在常数,使得.

(3)为抛物线准线上三点,且,判断的关系.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列是各项均为正数的等差数列.

(1)若,且成等比数列,求数列的通项公式

(2)在(1)的条件下,数列的前和为,设,若对任意的,不等式恒成立,求突数的最小值:

(3)若数列中有两项可以表示位某个整数的不同次冪,求证:数列中存在无穷多项构成等比数列.

查看答案和解析>>

科目: 来源: 题型:

【题目】椭圆的离心率为,短轴端点与两焦点围成的三角形面积为.

(1)求椭圆的方程;

(2)设直线与椭圆交于两点,且过点为坐标原点,当△为直角三角形,求直线的斜率.

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36.

(1)求样本容量及样本中净重大于或等于96克并且小于102克的产品的个数;

(2)已知这批产品中每个产品的利润y(单位:元)与产品净重x(单位:克)的关系式为求这批产品平均每个的利润.

查看答案和解析>>

科目: 来源: 题型:

【题目】某农场所对冬季昼夜温差大小与某反季大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了2019121日至125日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下表:

日期

121

122

123

124

125

温差

10

11

13

12

8

发芽数y(颗)

23

25

30

26

16

该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的两组数据进行检验.

(1)求选取的2组数据恰好是不相邻的2天数据的概率;

(2)若选取的是121日与125日的两组数据,请根据122日至124日的数据,求出y关于x的线性回归方程;并预报当温差为时,种子发芽数.

附:回归直线方程:,其中

查看答案和解析>>

科目: 来源: 题型:

【题目】设定义在上的函数.

(1)求函数的单调区间;

(2)若存在,使得成立,求实数的取值范围;

(3)定义:如果实数满足, 那么称更接近.对于(2)中的,问:哪个更接近?并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆C内有一点P22),过点P作直线l交圆CAB两点.

1)当l经过圆心C时,求直线l的方程;

2)当直线l的倾斜角为45时,求弦AB的长.

查看答案和解析>>

同步练习册答案