科目: 来源: 题型:
【题目】如图已知椭圆
,
是长轴的一个端点,弦
过椭圆的中心
,且
,
.
![]()
(Ⅰ)求椭圆的方程:
(Ⅱ)设
为椭圆上异于
且不重合的两点,且
的平分线总是垂直于
轴,是否存在实数
,使得
,若存在,请求出
的最大值,若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知在四棱锥
中,底面
是边长为
的正方形,
是正三角形,
,
分别是
的中点。
(1)求证:
;
(2)求平面
与平面
所成锐二面角的大小;
(3)线段
上是否存在一个动点
,使得直线
与平面
所成角为
,若存在,求线段
的长度,若不存在,说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,
E是PD的中点.
![]()
(1)证明:直线
平面PAB;
(2)点M在棱PC 上,且直线BM与底面ABCD所成角为
,求二面角M-AB-D的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=-b,其中常数a,b∈R.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)设g(x)=f′(x)e-x,求函数g(x)的极值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的离心率为
,两焦点与短轴的一个端点的连线构成的三角形面积为
.
(I)求椭圆
的方程;
(II)设与圆
相切的直线
交椭圆
于
,
两点(
为坐标原点),
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱锥
中,
,
,
,
,
分别是
,
的中点,
在
上且
.
![]()
(I)求证:
;
(II)求直线
与平面
所成角的正弦值;
(III)在线段
上是否存在点
,使二面角
的大小为
?若存在,求出
的长;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com