科目: 来源: 题型:
【题目】已知数列
,
均为各项都不相等的数列,
为
的前n项和,
.
若
,求
的值;
若
是公比为
的等比数列,求证:数列
为等比数列;
若
的各项都不为零,
是公差为d的等差数列,求证:
,
,
,
,
成等差数列的充要条件是
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
:
,
,
分别是椭圆短轴的上下两个端点,
是椭圆的左焦点,P是椭圆上异于点
,
的点,若
的边长为4的等边三角形.
写出椭圆的标准方程;
当直线
的一个方向向量是
时,求以
为直径的圆的标准方程;
设点R满足:
,
,求证:
与
的面积之比为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法错误的是( )
A.命题“若
,则
”的逆否命题是“若
,则
”
B.“
”是“
”的充分不必要条件
C.若
为假命题,则
、
均为假命题
D.命题
:“
,使得
”,则非
:“
,
”
查看答案和解析>>
科目: 来源: 题型:
【题目】如图已知椭圆的焦点在
轴上,其离心率为
,点
在椭圆上.
![]()
(1)求椭圆的标准方程;
(2)椭圆的弦
,
的中点分别为
,
,若
平行于
,直线
与椭圆相切,且斜率为1,则
,
斜率之和是否为定值?若是定值,请求出该定值;若不是定值请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】 某创业投资公司拟投资开发某种新能源产品,估计能获得25万元~ 1600万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%.(即:设奖励方案函数模型为y=f (x)时,则公司对函数模型的基本要求是:当x∈[25,1600]时,①f(x)是增函数;②f (x)
75恒成立; ![]()
恒成立.
(1)判断函数
是否符合公司奖励方案函数模型的要求,并说明理由;
(2)已知函数
符合公司奖励方案函数模型要求,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某中学高三年级有400名学生参加月考,用简单随机抽样的方法抽取了一个容量为50的样本,得到数学成绩的频率分布直方图如图所示.
![]()
(1)求第四个小矩形的高;
(2)估计本校在这次统测中数学成绩不低于120分的人数;
(3)已知样本中,成绩在
内的有两名女生,现从成绩在这个分数段的学生中随机选取2人做学习交流,求恰好男生女生各有一名的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
.
(1)试求函数
的极值点的个数;
(2)若
,
恒成立,求
的最大值.
参考数据:
| 1.6 | 1.7 | 1.74 | 1.8 | 10 |
| 4.953 | 5.474 | 5.697 | 6.050 | 22026 |
| 0.470 | 0.531 | 0.554 | 0.558 | 2.303 |
查看答案和解析>>
科目: 来源: 题型:
【题目】
已知函数
为自然对数的底数)
(1)求
的单调区间,若
有最值,请求出最值;
(2)是否存在正常数
,使
的图象有且只有一个公共点,且在该公共点处有共同的切线?若存在,求出
的值,以及公共点坐标和公切线方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com