相关习题
 0  264410  264418  264424  264428  264434  264436  264440  264446  264448  264454  264460  264464  264466  264470  264476  264478  264484  264488  264490  264494  264496  264500  264502  264504  264505  264506  264508  264509  264510  264512  264514  264518  264520  264524  264526  264530  264536  264538  264544  264548  264550  264554  264560  264566  264568  264574  264578  264580  264586  264590  264596  264604  266669 

科目: 来源: 题型:

【题目】某市春节期间7家超市的广告费支出(万元)和销售额(万元)数据如下:

超市

A

B

C

D

E

F

G

广告费支出

1

2

4

6

11

13

19

销售额

19

32

40

44

52

53

54

参数数据及公式:.

1)若用线性回归模型拟合yx的关系,求y关于x的线性回归方程;

2)用对数回归模型拟合yx的关系,可得回归方程:,经计算得出线性回归模型和对数模型的分别约为0.750.97,请用说明选择哪个回归模型更合适,并用此模型预测A超市广告费支出为8万元时的销售额.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆的左、右焦点分别为F1F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.

(1)求椭圆E的标准方程;

(2)若直线l1l2的交点Q在椭圆E上,求点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是(  )

A. 恰有1件一等品 B. 至少有一件一等品

C. 至多有一件一等品 D. 都不是一等品

查看答案和解析>>

科目: 来源: 题型:

【题目】各项均为正数的数列{an}中,前n项和

(1)求数列{an}的通项公式;

(2)若恒成立,求k的取值范围;

(3)是否存在正整数mk,使得amam+5ak成等比数列?若存在,求出mk的值,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】化简

1

2

【答案】(1) ;(2) .

【解析】试题分析:(1)切化弦可得三角函数式的值为-1

(2)结合三角函数的性质可得三角函数式的值为

试题解析:

(1)tan70°cos10°( tan20°﹣1)

=cot20°cos10°( ﹣1)

=cot20°cos10°(

=×cos10°×(

=×cos10°×(

=×(﹣

=﹣1

(2)∵(1+tan1°)(1+tan44°)=1+(tan1°+tan44°)+tan1°tan44°

=1+tan(1°+44°)[1﹣tan1°tan44°]+tan1°tan44°=2.

同理可得(1+tan2°)(1+tan43°)

=(1+tan3°)(1+tan42°)

=(1+tan4°)(1+tan41°)=…=2,

=

点睛:三角函数式的化简要遵循“三看”原则:一看角,这是重要一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式 ;二看函数名称,看函数名称之间的差异,从而确定使用的公式,常见的有切化弦;三看结构特征,分析结构特征,可以帮助我们找到变形的方向,如遇到分式要通分等.

型】解答
束】
18

【题目】平面内给定三个向量

1)求

2)求满足的实数.

3)若,求实数.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆的方程为(x-12+y-12=9P22)是该圆内一点,过点P的最长弦和最短弦分别为ACBD,则四边形ABCD的面积是______

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,平面底面.分别是的中点,求证:

(Ⅰ)底面

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

科目: 来源: 题型:

【题目】定义:若整数满足:,称为离实数最近的整数,记作.给出函数的四个命题:

①函数的定义域为,值域为

②函数是周期函数,最小正周期为

③函数上是增函数;

④函数的图象关于直线对称.

其中所有的正确命题的序号为()

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线,过点的直线与抛物线交于 两点,又过两点分别作抛物线的切线,两条切线交于点。

1)证明:直线的斜率之积为定值;

2)求面积的最小值

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)当 时,求曲线yfx)在点(1f1))处的切线方程;(2)求函数 的单调区间和极值

查看答案和解析>>

同步练习册答案