科目: 来源: 题型:
【题目】某市春节期间7家超市的广告费支出(万元)和销售额(万元)数据如下:
超市 | A | B | C | D | E | F | G |
广告费支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
销售额 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
参数数据及公式:,,,,,,.
(1)若用线性回归模型拟合y与x的关系,求y关于x的线性回归方程;
(2)用对数回归模型拟合y与x的关系,可得回归方程:,经计算得出线性回归模型和对数模型的分别约为0.75和0.97,请用说明选择哪个回归模型更合适,并用此模型预测A超市广告费支出为8万元时的销售额.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.
(1)求椭圆E的标准方程;
(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是( )
A. 恰有1件一等品 B. 至少有一件一等品
C. 至多有一件一等品 D. 都不是一等品
查看答案和解析>>
科目: 来源: 题型:
【题目】各项均为正数的数列{an}中,前n项和.
(1)求数列{an}的通项公式;
(2)若恒成立,求k的取值范围;
(3)是否存在正整数m,k,使得am,am+5,ak成等比数列?若存在,求出m和k的值,若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】化简
(1)
(2)
【答案】(1) ;(2) .
【解析】试题分析:(1)切化弦可得三角函数式的值为-1
(2)结合三角函数的性质可得三角函数式的值为
试题解析:
(1)tan70°cos10°( tan20°﹣1)
=cot20°cos10°( ﹣1)
=cot20°cos10°( )
=×cos10°×()
=×cos10°×()
=×(﹣)
=﹣1
(2)∵(1+tan1°)(1+tan44°)=1+(tan1°+tan44°)+tan1°tan44°
=1+tan(1°+44°)[1﹣tan1°tan44°]+tan1°tan44°=2.
同理可得(1+tan2°)(1+tan43°)
=(1+tan3°)(1+tan42°)
=(1+tan4°)(1+tan41°)=…=2,
故=
点睛:三角函数式的化简要遵循“三看”原则:一看角,这是重要一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式 ;二看函数名称,看函数名称之间的差异,从而确定使用的公式,常见的有切化弦;三看结构特征,分析结构特征,可以帮助我们找到变形的方向,如遇到分式要通分等.
【题型】解答题
【结束】
18
【题目】平面内给定三个向量
(1)求
(2)求满足的实数.
(3)若,求实数.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆的方程为(x-1)2+(y-1)2=9,P(2,2)是该圆内一点,过点P的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是______ .
查看答案和解析>>
科目: 来源: 题型:
【题目】定义:若整数满足:,称为离实数最近的整数,记作.给出函数的四个命题:
①函数的定义域为,值域为;
②函数是周期函数,最小正周期为;
③函数在上是增函数;
④函数的图象关于直线对称.
其中所有的正确命题的序号为()
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com