科目: 来源: 题型:
【题目】已知椭圆C:
(
)的两焦点与短轴两端点围成面积为12的正方形.
(1)求椭圆C的标准方程;
(2)我们称圆心在椭圆上运动,半径为
的圆是椭圆的“卫星圆”.过原点O作椭圆C的“卫星圆”的两条切线,分别交椭圆C于A、B两点,若直线
、
的斜率为
、
,当
时,求此时“卫星圆”的个数.
查看答案和解析>>
科目: 来源: 题型:
【题目】某医院为筛查某种疾病,需要检验血液是否为阳性,现有
(
)份血液样本,有以下两种检验方式:(1)逐份检验,则需要检验
次;(2)混合检验,将其中
(
且
)份血液样本分别取样混合在一起检验.若检验结果为阴性,这
份的血液全为阴性,因而这
份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这
份血液究竟哪几份为阳性,就要对这
份再逐份检验,此时这
份血液的检验次数总共为
次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为
.
(1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过4次检验就能把阳性样本全部检验出来的概率.
(2)现取其中
(
且
)份血液样本,记采用逐份检验方式,样本需要检验的总次数为
,采用混合检验方式,样本需要检验的总次数为![]()
(ⅰ)试运用概率统计的知识,若
,试求
关于
的函数关系式
;
(ⅱ)若
,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求
的最大值.
参考数据:
,
,
,
,![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】为迎接2022年北京冬季奥运会,普及冬奥知识,某校开展了“冰雪答题王”冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:
,
,
,
,
,
,得到如图所示的频率分布直方图.
![]()
(1)求
的值;
(2)估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);
(3)在抽取的100名学生中,规定:比赛成绩不低于80分为“优秀”,比赛成绩低于80分为“非优秀”.请将下面的2×2列联表补充完整,并判断是否有99.9%的把握认为“比赛成绩是否优秀与性别有关”?
优秀 | 非优秀 | 合计 | |
男生 | 40 | ||
女生 | 50 | ||
合计 | 100 |
参考公式及数据:![]()
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正三棱柱
各条棱的长度均相等,
为
的中点,
分别是线段
和线段
的动点(含端点),且满足
,当
运动时,下列结论中不正确的是
![]()
A. 在
内总存在与平面
平行的线段
B. 平面
平面![]()
C. 三棱锥
的体积为定值
D.
可能为直角三角形
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在等腰
中,斜边
,
为直角边
上的一点,将
沿直线
折叠至
的位置,使得点
在平面
外,且点
在平面
上的射影
在线段
上设
,则
的取值范围是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上.这条直线被后人称为三角形的“欧拉线”.在平面直角坐标系中作
,
中,
,点
,点
,且其“欧拉线”与圆
相切,则该圆的直径为( )
A.1B.
C.2D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】惠州市某商店销售某海鲜,经理统计了春节前后50天该海鲜的日需求量
(
,单位:公斤),其频率分布直方图如下图所示.该海鲜每天进货1次,每销售1公斤可获利40元;若供大于求,剩余的海鲜削价处理,削价处理的海鲜每公斤亏损10元;若供不应求,可从其它商店调拨,调拨的海鲜销售1公斤可获利30元.假设商店该海鲜每天的进货量为14公斤,商店销售该海鲜的日利润为
元.
![]()
(1)求商店日利润
关于日需求量
的函数表达式.
(2)根据频率分布直方图,
①估计这50天此商店该海鲜日需求量的平均数.
②假设用事件发生的频率估计概率,请估计日利润不少于620元的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,若有优势的马一定获胜,则齐王的马获胜的概率为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】平面直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系.且曲线
的极坐标方程为
.
(1)求直线
的普通方程以及曲线
的直角坐标方程;
(2)若点
的极坐标为
,直线
与曲线
交于
两点,求
的值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com