科目: 来源: 题型:
【题目】已知
为圆
上一动点,
在
轴,
轴上的射影分别为点
,
,动点
满足
,记动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
的直线与曲线
交于
,
两点,判断以
为直径的圆是否过定点?求出定点的坐标;若不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本
(元)与生产该产品的数量
(千件)有关,经统计得到如下数据:
![]()
根据以上数据,绘制了散点图.
![]()
观察散点图,两个变量不具有线性相关关系,现考虑用反比例函数模型
和指数函数模型
分别对两个变量的关系进行拟合.已求得用指数函数模型拟合的回归方程为
,
与
的相关系数
.参考数据(其中
):
![]()
(1)用反比例函数模型求
关于
的回归方程;
(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.01),并用其估计产量为10千件时每件产品的非原料成本;
(3)该企业采取订单生产模式(根据订单数量进行生产,即产品全部售出).根据市场调研数据,若该产品单价定为100元,则签订9千件订单的概率为0.8,签订10千件订单的概率为0.2;若单价定为90元,则签订10千件订单的概率为0.3,签订11千件订单的概率为0.7.已知每件产品的原料成本为10元,根据(2)的结果,企业要想获得更高利润,产品单价应选择100元还是90元,请说明理由.
参考公式:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
,相关系数
.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了节能减排,发展低碳经济,我国政府从2001年起就通过相关扶植政策推动新能源汽车产业发展.下面的图表反映了该产业发展的相关信息:
![]()
2019年2月份新能源汽车销量结构图根据上述图表信息,下列结论错误的是( )
A.2018年4月份我国新能源汽车的销量高于产量
B.2017年3月份我国新能源汽车的产量不超过3.4万辆
C.2019年2月份我国插电式混合动力汽车的销量低于1万辆
D.2017年我国新能源汽车总销量超过70万辆
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,已知圆
,点
,
是圆
上任意一点,线段
的垂直平分线与半径
相交于点
,设点
的轨迹为曲线
。
(1)求曲线
的方程;
(2)若
,设过点
的直线
与曲线
分别交于点
,其中
,求证:直线
必过
轴上的一定点。(其坐标与
无关)
查看答案和解析>>
科目: 来源: 题型:
【题目】从某公司生产线生产的某种产品中抽取1000件,测量这些产品的一项质量指标,由检测结果得如图所示的频率分布直方图:
![]()
(1)求这1000件产品质量指标的样本平均数
和样本方差
(同一组中的数据用该组区间的中点值作代表);
(2)由直方图可以认为,这种产品的质量指标值
服从正态分布
,其中
近似为样本平均数
近似为样本方差
.
(i)利用该正态分布,求
;
(ⅱ)已知每件该产品的生产成本为10元,每件合格品(质量指标值
)的定价为16元;若为次品(质量指标值
),除了全额退款外且每件次品还须赔付客户48元.若该公司卖出10件这种产品,记
表示这件产品的利润,求
.
附:
,若
,则
.
查看答案和解析>>
科目: 来源: 题型:
【题目】共有编号分别为1,2,3,4,5的五个座位,在甲同学不坐2号座位,乙同学不坐5号座位的条件下,甲、乙两位同学的座位号相加是偶数的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知抛物线
,过抛物线上点B作切线
交y轴于点![]()
![]()
(Ⅰ)求抛物线方程和切点
的坐标;
(Ⅱ)过点
作抛物线的割线,在第一象限内的交点记为
,
,设
为y轴上一点,满足
,
为
中点,求
的取值范围。
查看答案和解析>>
科目: 来源: 题型:
【题目】在极坐标系中,圆
.以极点
为原点,极轴为
轴正半轴建立直角坐标系
,直线
经过点
且倾斜角为
.
求圆
的直角坐标方程和直线
的参数方程;
已知直线
与圆
交与
,
,满足
为
的中点,求
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com