精英家教网 > 高中数学 > 题目详情

【题目】在极坐标系中,圆.以极点为原点,极轴为轴正半轴建立直角坐标系,直线经过点且倾斜角为.

求圆的直角坐标方程和直线的参数方程;

已知直线与圆交与,满足的中点,求.

【答案】(1)(为参数,).(2)

【解析】

(1)利用极坐标方程与直角坐标方程的互化公式,可求解圆的直角坐标方程,根据直线参数方程的形式,即可求得直线的参数方程;

将直线的方程代入圆的方程,利用根与系数的关系,求得,由的中点,得到,求得,即可求得的表达式,利用三角函数的性质,即可求解.

(1)由题意,圆,可得

因为,所以,即

根据直线的参数方程的形式,可得直线:(为参数,).

对应的参数分别为

将直线的方程代入,整理得

所以

的中点,所以

因此

所以,即

因为,所以

从而,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】1)若点到直线的距离比它到点的距离小,求点的轨迹方程.

2)设椭圆的离心率为,焦点在轴上且长轴长为,若曲线上的点到椭圆的两个焦点的距离的差绝对值等于,求曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过底面是矩形的四棱锥FABCD的顶点FEFAB,使AB=2EF,且平面ABFE⊥平面ABCD,若点GCD上且满足DG=G.

求证:(1)FG∥平面AED;

(2)平面DAF⊥平面BAF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,侧棱底面,点的中点.

求证:平面

若直线与平面所成角为,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,证明:

2)若只有一个极值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点是曲线上的动点,点的延长线上,且,点的轨迹为

(1)求直线及曲线的极坐标方程;

(2)若射线与直线交于点,与曲线交于点(与原点不重合),求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近来国内一些互联网公司为了赢得更大的利润、提升员工的奋斗姿态,要求员工实行“996”工作制,即工作日早9点上班,晚上21点下班,中午和傍晚最多休息1小时,总计工作10小时以上,并且一周工作6天的工作制度,工作期间还不能请假,也没有任何补贴和加班费.消息一出,社交媒体一片哗然,有的人认为这是违反《劳动法》的一种对员工的压榨行为,有的人认为只有付出超越别人的努力和时间,才能够实现想要的成功,这是提升员工价值的一种有效方式.对此,国内某大型企业集团管理者认为应当在公司内部实行“996”工作制,但应该给予一定的加班补贴(单位:百元),对于每月的补贴数额集团人力资源管理部门随机抽取了集团内部的1000名员工进行了补贴数额(单位:百元)期望值的网上问卷调查,并把所得数据列成如下所示的频数分布表:

1)求所得样本的中位数(精确到百元);

2)根据样本数据,可近似地认为员工的加班补贴服从正态分布,若该集团共有员工40000人,试估计有多少员工期待加班补贴在8100元以上;

3)已知样本数据中期望补贴数额在范围内的8名员工中有5名男性,3名女性,现选其中3名员工进行消费调查,记选出的女职员人数为,求的分布列和数学期望.

附:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点MN分别为正方体ABCDA1B1C1D1的棱AA1BB1的中点,以正方体的六个面的中心为顶点构成一个八面体,若平面D1MNC1将该八面体分割成上、下两部分的体积分别为V1V2,则

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形,,平面底面的中点,是棱上的点,

1求证:平面平面

2,求二面角的大小

查看答案和解析>>

同步练习册答案