相关习题
 0  264827  264835  264841  264845  264851  264853  264857  264863  264865  264871  264877  264881  264883  264887  264893  264895  264901  264905  264907  264911  264913  264917  264919  264921  264922  264923  264925  264926  264927  264929  264931  264935  264937  264941  264943  264947  264953  264955  264961  264965  264967  264971  264977  264983  264985  264991  264995  264997  265003  265007  265013  265021  266669 

科目: 来源: 题型:

【题目】已知平面直角坐标系xOy,在x轴的正半轴上,依次取点,并在第一象限内的抛物线上依次取点,使得都为等边三角形,其中为坐标原点,设第n个三角形的边长为

,并猜想不要求证明);

,记为数列中落在区间内的项的个数,设数列的前m项和为,试问是否存在实数,使得对任意恒成立?若存在,求出的取值范围;若不存在,说明理由;

已知数列满足:,数列满足:,求证:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知双曲线的左、右焦点分别是,左、右两顶点分别是,弦ABCD所在直线分别平行于x轴与y轴,线段BA的延长线与线段CD相交于点如图).

的一条渐近线的一个方向向量,试求的两渐近线的夹角

,试求双曲线的方程;

的条件下,且,点C与双曲线的顶点不重合,直线和直线与直线l分别相交于点MN,试问:以线段MN为直径的圆是否恒经过定点?若是,请求出定点的坐标;若不是,试说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某游戏厂商对新出品的一款游戏设定了“防沉迷系统”,规则如下:

①3小时以内(3小时)为健康时间,玩家在这段时间内获得的累积经验值单位:与游玩时间小时)满足关系式:

②35小时(5小时)为疲劳时间,玩家在这段时间内获得的经验值为即累积经验值不变);

超过5小时为不健康时间,累积经验值开始损失,损失的经验值与不健康时间成正比例关系,比例系数为50.

时,写出累积经验值E与游玩时间t的函数关系式,并求出游玩6小时的累积经验值;

该游戏厂商把累积经验值E与游玩时间t的比值称为“玩家愉悦指数”,记作;若,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】若函数满足:集合中至少存在三个不同的数构成等比数列,则称函数是等比源函数

)判断下列函数:①中,哪些是等比源函数?(不需证明)

)判断函数是否为等比源函数,并证明你的结论.

)证明: ,函数都是等比源函数

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆是它的上顶点,点各不相同且均在椭圆上.

1)若恰为椭圆长轴的两个端点,求的面积;

2)若,求证:直线过一定点;

3)若的外接圆半径为,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知在平面直角坐标系中,圆的参数方程为 (为参数).以原点为极点,轴的非负半轴为极轴,取相同的单位长度建立极坐标系.

(I)求圆的普通方程及其极坐标方程;

(II)设直线的极坐标方程为,射线与圆的交点为,与直线的交点为Q,求线段PQ的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数为常数)在内有两个极值点

(1)求实数的取值范围;

(2)求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线的焦点为,直线交于两点,且与轴交于点.

1)若直线的斜率,且,求的值;

2)若轴上是否存在点,总有?若存在,求出点坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在底面为矩形的四棱锥中,平面平面.

1)证明:

2)若,设中点,求直线与平面所成角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知矩形,将沿对角线进行翻折,得到三棱锥,则在翻折的过程中,有下列结论:

①三棱锥的体积最大值为

②三棱锥的外接球体积不变;

③三棱锥的体积最大值时,二面角的大小是

④异面直线所成角的最大值为.

其中正确的是(

A.①②④B.②③C.②④D.③④

查看答案和解析>>

同步练习册答案