科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知在平面直角坐标系
中,圆
的参数方程为
(
为参数).以原点
为极点,
轴的非负半轴为极轴,取相同的单位长度建立极坐标系.
(I)求圆
的普通方程及其极坐标方程;
(II)设直线
的极坐标方程为
,射线
与圆
的交点为
,与直线
的交点为Q,求线段PQ的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
:
的左、右焦点分别为
,
,且离心率为
,
为椭圆上任意一点,当
时,
的面积为1.
(1)求椭圆
的方程;
(2)已知点
是椭圆
上异于椭圆顶点的一点,延长直线
,
分别与椭圆交于点
,
,设直线
的斜率为
,直线
的斜率为
,求证:
为定值.
【答案】(1)
;(2)![]()
【解析】试题分析:(1)设
由题
,由此求出
,可得椭圆
的方程;
(2)设
,
,
当直线
的斜率不存在时,可得
;
当直线
的斜率不存在时,同理可得
.
当直线
、
的斜率存在时,
,
设直线
的方程为
,则由
消去
通过运算可得
,同理可得
,由此得到直线
的斜率为
,
直线
的斜率为
,进而可得
.
试题解析:(1)设
由题
,
解得
,则
,
椭圆
的方程为
.
(2)设
,
,
当直线
的斜率不存在时,设
,则
,
直线
的方程为
代入
,可得
,
,
,则
,
直线
的斜率为
,直线
的斜率为
,
,
当直线
的斜率不存在时,同理可得
.
当直线
、
的斜率存在时,
,
设直线
的方程为
,则由
消去
可得:
,
又
,则
,代入上述方程可得
,
,则![]()
,
设直线
的方程为
,同理可得
,
直线
的斜率为
,
直线
的斜率为
,
.
所以,直线
与
的斜率之积为定值
,即
.
【题型】解答题
【结束】
21
【题目】已知函数
,
,在
处的切线方程为
.
(1)求
,
;
(2)若
,证明:
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的中心在坐标原点,离心率等于
,该椭圆的一个长轴端点恰好是抛物线
的焦点.
(1)求椭圆
的方程;
(2)已知直线
与椭圆
的两个交点记为
、
,其中点
在第一象限,点
、
是椭圆上位于直线
两侧的动点.当
、
运动时,满足
,试问直线
的斜率是否为定值?若是,求出该定值;若不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】为响应国家“精准扶贫、精准脱贫”的号召,某贫困县在精准推进上下实功,在在精准落实上见实效现从全县扶贫对象中随机抽取
人对扶贫工作的满意度进行调查,以茎叶图中记录了他们对扶贫工作满意度的分数(满分
分)如图所示,已知图中的平均数与中位数相同.现将满意度分为“基本满意”(分数低于平均分)、“满意”(分数不低于平均分且低于
分)和“很满意”(分数不低于
分)三个级别.
![]()
(1)求茎叶图中数据的平均数和
的值;
(2)从“满意”和“很满意”的人中随机抽取
人,求至少有
人是“很满意”的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知双曲线
,双曲线
的左、右焦点分别为F1,F2,M是双曲线C2的一条渐近线上的点,且OM⊥MF2,O为坐标原点,若
,且双曲线C1,C2的离心率相同,则双曲线C2的实轴长是 ( )
A. 32 B. 4 C. 8 D. 16
查看答案和解析>>
科目: 来源: 题型:
【题目】我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献,这5部专著中有3部产生于汉、魏、晋、南北朝时期,某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系
中,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)
为曲线
上的动点,点
在线段
上,且满足
,求点
的轨迹
的直角坐标方程;
(2)设点
的极坐标为
,点
在曲线
上,求
面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
.
(1)若曲线
在
处的切线的方程为
,求实数
的值;
(2)设
,若对任意两个不等的正数
,都有
恒成立,求实数
的取值范围;
(3)若在
上存在一点
,使得
成立,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com