科目: 来源: 题型:
【题目】已知抛物线
的焦点为F,直线l与抛物线C交于A,B两点,O是坐标原点.
(1)若直线l过点F且
,求直线l的方程;
(2)已知点
,若直线l不与坐标轴垂直,且
,证明:直线l过定点.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知四棱锥
,
,在平行四边形
中,
,Q为
上的点,过
的平面分别交
,
于点E、F,且
平面
.
![]()
(1)证明:
;
(2)若
,
,Q为
的中点,
与平面
所成角的正弦值为
,求平面
与平面
所成锐二面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在正方体ABCD-ABCD中,平面
垂直于对角线AC,且平面
截得正方体的六个表面得到截面六边形,记此截面六边形的面积为S,周长为l,则( )
![]()
A. S为定值,l不为定值 B. S不为定值,l为定值
C. S与l均为定值 D. S与l均不为定值
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,椭圆
的参数方程为
(
为参数),以原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求经过椭圆
右焦点
且与直线
垂直的直线的极坐标方程;
(2)若
为椭圆
上任意-点,当点
到直线
距离最小时,求点
的直角坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线
的焦点为
,
轴上方的点
在抛物线上,且
,直线
与抛物线交于
,
两点(点
,
与
不重合),设直线
,
的斜率分别为
,
.
(Ⅰ)求抛物线的方程;
(Ⅱ)当
时,求证:直线
恒过定点并求出该定点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次乙肝普查.为此需要抽验669人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.
方案一:将每个人的血分别化验,这时需要验669次.
方案二:按
个人一组进行随机分组,把从每组
个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这
个人的血就只需检验一次(这时认为每个人的血化验
次);否则,若呈阳性,则需对这
个人的血样再分别进行一次化验,这时该组
个人的血总共需要化验
次.
假设此次普查中每个人的血样化验呈阳性的概率为
,且这些人之间的试验反应相互独立.
(1)设方案二中,某组
个人中每个人的血化验次数为
,求
的分布列.
(2)设
,试比较方案二中,
分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案一,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数)
查看答案和解析>>
科目: 来源: 题型:
【题目】己知函数
的定义域是
,对任意的
,有
.当
时,
.给出下列四个关于函数
的命题:
①函数
是奇函数;
②函数
是周期函数;
③函数
的全部零点为
,
;
④当算
时,函数
的图象与函数
的图象有且只有4个公共点.
其中,真命题的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目: 来源: 题型:
【题目】为了解学生课外使用手机的情况,某学校收集了本校500名学生2019年12月课余使用手机的总时间(单位:小时)的情况.从中随机抽取了50名学生,将数据进行整理,得到如图所示的频率分布直方图.已知这50名学生中,恰有3名女生课余使用手机的总时间在
,现在从课余使用手机总时间在
的样本对应的学生中随机抽取3名,则至少抽到2名女生的概率为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com