科目: 来源: 题型:
【题目】疫情期间,为了更好地了解学生线上学习的情况,某兴趣小组在网上随机抽取了100名学生对其线上学习满意情况进行调查,其中男女比例为2∶3,其中男生有24人满意,女生有12人不满意.
(1)完成列联表,并回答是否有95%把握认为“线上学习是否满意与性别有关”
满意 | 不满意 | 合计 | |
男生 | |||
女生 | |||
合计 |
(2)从对线上学习满意的学生中,利用分层抽样抽取6名学生,再在6名学生中抽取3名,记抽到的女生人数为,求的分布列和数学期望.
参考公式:附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
.072 | 2.706 | 3.842 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 来源: 题型:
【题目】设, ,函数, .
(Ⅰ)若与有公共点,且在点处切线相同,求该切线方程;
(Ⅱ)若函数有极值但无零点,求实数的取值范围;
(Ⅲ)当, 时,求在区间的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】微博橙子辅导用简单随机抽样方法抽取了100名同学,对其社会实践次数进行调查,结果如下:
若将社会实践次数不低于12次的学生称为“社会实践标兵”.
(1)将频率视为概率,估计该校1600名学生中“社会实践标兵”有多少人?
(2)从已抽取的8名“社会实践标兵”中随机抽取4位同学参加社会实践表彰活动.
(ⅰ)设A为事件"抽取的4位同学中既有男同学又有女同学”,求事件A发生的概率;
(ⅱ)用X表示抽取的“社会实践标兵”中男生的人数,求随机变量X的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】设椭圆的左焦点为,右顶点为,离心率为.已知是抛物线的焦点, 到抛物线的准线的距离为.
(I)求椭圆的方程和抛物线的方程;
(II)设上两点, 关于轴对称,直线与椭圆相交于点(异于点),直线与轴相交于点.若的面积为,求直线的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲乙两位同学玩游戏,对于给定的实数,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把乘以2后再减去6;如果出现一个正面朝上,一个反面朝上,则把除以2后再加上6,这样就可得到一个新的实数,对实数仍按上述方法进行一次操作,又得到一个新的实数,当时,甲获胜,否则乙获胜,若甲胜的概率为,则的取值范围是____.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数的部分图像如图所示,两点之间的距离为10,且,若将函数的图像向右平移个单位长度后所得函数图像关于轴对称,则的最小值为( )
A.1B.2C.3D.4
查看答案和解析>>
科目: 来源: 题型:
【题目】图1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形图表示学生人数依次记为A1、A2、…A10(如A2表示身高(单位:cm)在[150,155内的人数].图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是
A.i<6B.i<7C.i<8D.i<9
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.
(1)求直线的极坐标方程和曲线的参数方程;
(2)若,直线与曲线交于两点,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com