科目: 来源: 题型:
【题目】如图,椭圆
:
(
)和圆
:
,已知圆
将椭圆
的长轴三等分,椭圆
右焦点到右准线的距离为
,椭圆
的下顶点为
,过坐标原点
且与坐标轴不重合的任意直线
与圆
相交于点
、
.
![]()
(1)求椭圆
的方程;
(2)若直线
、
分别与椭圆
相交于另一个交点为点
、
.
①求证:直线
经过一定点;
②试问:是否存在以
为圆心,
为半径的圆
,使得直线
和直线
都与圆
相交?若存在,请求出实数
的范围;若不存在,请说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在宽为
的路边安装路灯,灯柱
高为
,灯杆
是半径为
的圆
的一段劣弧.路灯采用锥形灯罩,灯罩顶
到路面的距离为
,到灯柱所在直线的距离为
.设
为灯罩轴线与路面的交点,圆心
在线段
上.
![]()
(1)当
为何值时,点
恰好在路面中线上?
(2)记圆心
在路面上的射影为
,且
在线段
上,求
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】【选修4-4:坐标系与参数方程】
在平面直角坐标系
,已知曲线
(
为参数),在以
原点为极点,
轴的非负半轴为极轴建立的极坐标系中,直线
的极坐标方程为
。
(1)求曲线
的普通方程和直线
的直角坐标方程;
(2)过点
且与直线
平行的直线
交
于
,
两点,求点
到
,
的距离之积。
查看答案和解析>>
科目: 来源: 题型:
【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间
与乘客等候人数
之间的关系,经过调查得到如下数据:
间隔时间( | 10 | 11 | 12 | 13 | 14 | 15 |
等侯人数( | 23 | 25 | 26 | 29 | 28 | 31 |
调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数
,再求
与实际等候人数
的差,若差值的绝对值不超过1,则称所求方程是“恰当回归方程”.
(1)若选取的是后面4组数据,求
关于
的线性回归方程
,并判断此方程是否是“恰当回归方程”;
(2)为了使等候的乘客不超过35人,试用(1)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟?
附:对于一组数据
,
,……,
,其回归直线
的斜率和截距的最小二乘估计分别为:
,![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】2019年1月1日,济南轨道交通
号线试运行,济南轨道交通集团面向广大市民开展“参观体验,征求意见”活动,市民可以通过济南地铁APP抢票,小陈抢到了三张体验票,准备从四位朋友小王,小张,小刘,小李中随机选择两位与自己一起去参加体验活动,则小王被选中的概率为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某高校在2019的自主招生考试中,考生笔试成绩分布在
,随机抽取200名考生成绩作为样本研究,按照笔试成绩分成5组,第1组成绩为
,第2组成绩为
,第3组成绩为
,第4组成绩为
,第5组成绩为
,样本频率分布直方图如下:
![]()
(1)估计全体考生成绩的中位数;
(2)为了能选拨出最优秀的学生,该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,从这6名学生中随机抽取2名学生进行外语交流面试,求这2名学生均来自同一组的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】设抛物线
的焦点为
,直线
与抛物线交于
两点.
(1)若
过点
,且
,求
的斜率;
(2)若
,且
的斜率为
,当
时,求
在
轴上的截距的取值范围(用
表示),并证明
的平分线始终与
轴平行.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com