科目: 来源: 题型:
【题目】在平面直角坐标系
中,曲线C的参数方程为:
(
为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为
.
(Ⅰ)求曲线C的普通方程和直线l的直角坐标方程;
(Ⅱ)设点P的直角坐标为
,若直线l与曲线C分别相交于A,B两点,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线
与圆
相交于
,
两点,且点
的横坐标为
.
是抛物线
的焦点,过焦点的直线
与抛物线
相交于不同的两点
,
.
(1)求抛物线
的方程.
(2)过点
,
作抛物线
的切线
,
,
是
,
的交点,求证:点
在定直线上.
查看答案和解析>>
科目: 来源: 题型:
【题目】在某企业中随机抽取了5名员工测试他们的艺术爱好指数
和创新灵感指数
,统计结果如下表(注:指数值越高素质越优秀):
![]()
(1)求创新灵感指数
关于艺术爱好指数
的线性回归方程;
(2)企业为提高员工的艺术爱好指数,要求员工选择音乐和绘画中的一种进行培训,培训音乐次数
对艺术爱好指数
的提高量为
,培训绘画次数
对艺术爱好指数
的提高量为
,其中
为参加培训的某员工已达到的艺术爱好指数.艺术爱好指数已达到3的员工甲选择参加音乐培训,艺术爱好指数已达到4的员工乙选择参加绘画培训,在他们都培训了20次后,估计谁的创新灵感指数更高?
参考公式:回归方程
中,
,
.
参考数据:
,![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知在平面直角坐标系内,曲线
的参数方程为
(
为参数).以坐标原点为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)把曲线
和直线
化为直角坐标方程;
(2)过原点
引一条射线分别交曲线
和直线
于
,
两点,射线上另有一点
满足
,求点
的轨迹方程(写成直角坐标形式的普通方程).
查看答案和解析>>
科目: 来源: 题型:
【题目】某中医药研究所研制出一种新型抗癌药物,服用后需要检验血液是否为阳性,现有
份血液样本每个样本取到的可能性均等,有以下两种检验方式:(1)逐份检验,则需要检验
次;(2)混合检验,将其中
份血液样本分别取样混合在一起检验,若结果为阴性,则这
份的血液全为阴性,因而这
份血液样本只需检验一次就够了;若检验结果为阳性,为了明确这
份血液究竟哪份为阳性,就需要对这
份再逐份检验,此时这
份血液的检验次数总共为
次假设在接受检验的血液样本中,每份样本的检验结果总阳性还是阴性都是相互独立的,且每份样本是阳性的概率为
.
(1)假设有6份血液样本,其中只有两份样本为阳性,若采取遂份检验的方式,求恰好经过两次检验就能把阳性样本全部检验出来的概率.
(2)现取其中的
份血液样本,记采用逐份检验的方式,样本需要检验的次数为
;采用混合检验的方式,样本简要检验的总次数为
;
(ⅰ)若
,试运用概率与统计的知识,求
关于
的函数关系
,
(ⅱ)若
,采用混合检验的方式需要检验的总次数的期望比逐份检验的总次数的期望少,求
的最大值(
,
,
,
,
,
)
查看答案和解析>>
科目: 来源: 题型:
【题目】2019年,河南省郑州市的房价依旧是郑州市民关心的话题.总体来说,二手房房价有所下降,相比二手房而言,新房市场依然强劲,价格持续升高.已知销售人员主要靠售房提成领取工资.现统计郑州市某新房销售人员一年的工资情况的结果如图所示,若近几年来该销售人员每年的工资总体情况基本稳定,则下列说法正确的是( )
![]()
A.月工资增长率最高的为8月份
B.该销售人员一年有6个月的工资超过4000元
C.由此图可以估计,该销售人员2020年6,7,8月的平均工资将会超过5000元
D.该销售人员这一年中的最低月工资为1900元
查看答案和解析>>
科目: 来源: 题型:
【题目】已知在平面直角坐标系内,曲线
的参数方程为
(
为参数).以坐标原点为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)把曲线
和直线
化为直角坐标方程;
(2)过原点
引一条射线分别交曲线
和直线
于
,
两点,射线上另有一点
满足
,求点
的轨迹方程(写成直角坐标形式的普通方程).
查看答案和解析>>
科目: 来源: 题型:
【题目】某中医药研究所研制出一种新型抗癌药物,服用后需要检验血液是否为阳性,现有
份血液样本每个样本取到的可能性均等,有以下两种检验方式:(1)逐份检验,则需要检验
次;(2)混合检验,将其中
份血液样本分别取样混合在一起检验,若结果为阴性,则这
份的血液全为阴性,因而这
份血液样本只需检验一次就够了;若检验结果为阳性,为了明确这
份血液究竟哪份为阳性,就需要对这
份再逐份检验,此时这
份血液的检验次数总共为
次假设在接受检验的血液样本中,每份样本的检验结果总阳性还是阴性都是相互独立的,且每份样本是阳性的概率为
.
(1)假设有6份血液样本,其中只有两份样本为阳性,若采取遂份检验的方式,求恰好经过两次检验就能把阳性样本全部检验出来的概率.
(2)现取其中的
份血液样本,记采用逐份检验的方式,样本需要检验的次数为
;采用混合检验的方式,样本简要检验的总次数为
;
(ⅰ)若
,试运用概率与统计的知识,求
关于
的函数关系
,
(ⅱ)若
,采用混合检验的方式需要检验的总次数的期望比逐份检验的总次数的期望少,求
的最大值(
,
,
,
,
,
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com