科目: 来源: 题型:
【题目】动点
在椭圆
上,过点
作
轴的垂线,垂足为
,点
满足
,已知点
的轨迹是过点
的圆.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
,
两点(
,
在
轴的同侧),
,
为椭圆的左、右焦点,若
,求四边形
面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点
为正方形
边
上异于点
,
的动点,将
沿
翻折成
,在翻折过程中,下列说法正确的是( )
![]()
![]()
A.存在点
和某一翻折位置,使得![]()
B.存在点
和某一翻折位置,使得
平面![]()
C.存在点
和某一翻折位置,使得直线
与平面
所成的角为45°
D.存在点
和某一翻折位置,使得二面角
的大小为60°
查看答案和解析>>
科目: 来源: 题型:
【题目】某同学在微信上查询到近十年全国高考报名人数、录取人数和山东夏季高考报名人数的折线图,其中
年的录取人数被遮挡了.他又查询到近十年全国高考录取率的散点图,结合图表中的信息判定下列说法正确的是( )
![]()
![]()
A.全国高考报名人数逐年增加
B.
年全国高考录取率最高
C.
年高考录取人数约
万
D.
年山东高考报名人数在全国的占比最小
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
为参数),以
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,点
是曲线
上的动点,点
在
的延长线上,且
,点
的轨迹为
.
(1)求直线
及曲线
的极坐标方程;
(2)若射线
与直线
交于点
,与曲线
交于点
(与原点不重合),求
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆
的左顶点为
,右焦点为
,
,
为椭圆
上两点,圆
.
(1)若
轴,且满足直线
与圆
相切,求圆
的方程;
(2)若圆
的半径为2,点
,
满足
,求直线
被圆
截得弦长的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱锥S﹣ABC中,SA⊥底面ABC,AC=AB=SA=2,AC⊥AB,D、E分别是AC、BC的中点,F在SE上,且SF=2FE.
![]()
(1)求证:平面SBC⊥平面SAE
(2)若G为DE中点,求二面角G﹣AF﹣E的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】第30届夏季奥运会将于2012年7月27日在伦敦举行,当地某学校招募了8名男志愿者和12名女志愿者.将这20名志愿者的身高编成如下茎叶图(单位:cm):若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.
(I)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(Ⅱ)若从所有“高个子”中选3名志愿者,用X表示所选志愿者中能担任“礼仪小姐”的人数,试写出X的分布列,并求X的数学期望.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】函数
的图象与函数
的图象关于直线
对称,则关于函数
以下说法正确的是( )
A. 最大值为1,图象关于直线
对称B. 在
上单调递减,为奇函数
C. 在
上单调递增,为偶函数D. 周期为
,图象关于点
对称
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com