科目: 来源: 题型:
【题目】已知点,分别是椭圆的左顶点和上顶点,为其右焦点,,且该椭圆的离心率为;
(1)求椭圆的标准方程;
(2)设点为椭圆上的一动点,且不与椭圆顶点重合,点为直线与轴的交点,线段的中垂线与轴交于点,若直线斜率为,直线的斜率为,且(为坐标原点),求直线的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知等比数列{an}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn}满足b1=1,数列{(bn+1﹣bn)an}的前n项和为2n2+n.
(1)求数列{an}的通项公式;
(2)求数列{bn}的通项公式.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥中,为等边三角形,边长为2,为等腰直角三角形,,,,平面平面ABCD.
(1)证明:平面PAD;
(2)求平面PAD与平面PBC所成锐二面角的余弦值;
(3)棱PD上是否存在一点E,使得平面PBC?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知双曲线C:1(a>0,b>0)的左焦点为F(﹣c,0),抛物线y2=4cx的准线与双曲线的一个交点为P,点M为线段PF的中点,且△OFM为等腰直角三角形,则双曲线C的离心率为( )
A.B.1C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为,AB=2,AC=1,∠BAC=60°,则此球的表面积等于( )
A.8πB.9πC.10πD.11π
查看答案和解析>>
科目: 来源: 题型:
【题目】已知箱中装有10个不同的小球,其中2个红球、3个黑球和5个白球,现从该箱中有放回地依次取出3个小球.则3个小球颜色互不相同的概率是_____;若变量ξ为取出3个球中红球的个数,则ξ的数学期望E(ξ)为_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线: 经过伸缩变换后得到曲线.以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求出曲线、的参数方程;
(Ⅱ)若、分别是曲线、上的动点,求的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某“双一流A类”大学就业部从该校2018年已就业的大学本科毕业生中随机抽取了100人进行问卷调查,其中一项是他们的月薪收入情况,调查发现,他们的月薪收入在人民币1.65万元到2.35万元之间,根据统计数据分组,得到如下的频率分布直方图:
(1)为感谢同学们对这项调查工作的支持,该校利用分层抽样的方法从样本的前两组中抽出6人,各赠送一份礼品,并从这6人中再抽取2人,各赠送某款智能手机1部,求获赠智能手机的2人月薪都不低于1.75万元的概率;
(2)同一组数据用该区间的中点值作代表.
(i)求这100人月薪收入的样本平均数和样本方差;
(ii)该校在某地区就业的2018届本科毕业生共50人,决定于2019国庆长假期间举办一次同学联谊会,并收取一定的活动费用,有两种收费方案:
方案一:设,月薪落在区间左侧的每人收取400元,月薪落在区间内的每人收到600元,月薪落在区间右侧的每人收取800元.
方案二:按每人一个月薪水的3%收取;用该校就业部统计的这100人月薪收入的样本频率进行估算,哪一种收费方案能收到更多的费用?
参考数据:.
查看答案和解析>>
科目: 来源: 题型:
【题目】关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学每人随机写下一个都小于1的正实数对(x,y)且x+y>1;再统计两数能与1构成钝角三角形三边的数对(x,y)的个数m,最后再根据统计数m估计π的值,假如统计结果是m=72,那么可以估计π的值约为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com