相关习题
 0  265091  265099  265105  265109  265115  265117  265121  265127  265129  265135  265141  265145  265147  265151  265157  265159  265165  265169  265171  265175  265177  265181  265183  265185  265186  265187  265189  265190  265191  265193  265195  265199  265201  265205  265207  265211  265217  265219  265225  265229  265231  265235  265241  265247  265249  265255  265259  265261  265267  265271  265277  265285  266669 

科目: 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)若,求证:..

查看答案和解析>>

科目: 来源: 题型:

【题目】2020年是全面建成小康社会目标实现之年,也是全面打赢脱贫攻坚战收官之年.某乡镇在2014年通过精准识别确定建档立卡的贫困户共有500户,结合当地实际情况采取多项精准扶贫措施,每年新脱贫户数如下表

年份

2015

2016

2017

2018

2019

年份代码

1

2

3

4

5

脱贫户数

55

68

80

92

100

1)根据2015-2019年的数据,求出关于的线性回归方程,并预测到2020年底该乡镇500户贫困户是否能全部脱贫;

22019年的新脱贫户中有20户五保户,20户低保户,60户扶贫户.该乡镇某干部打算按照分层抽样的方法对2019年新脱贫户中的5户进行回访,了解生产生活、帮扶工作开展情况.为防止这些脱贫户再度返贫,随机抽取这5户中的2户进行每月跟踪帮扶,求抽取的2户不都是扶贫户的概率.

参考公式:

查看答案和解析>>

科目: 来源: 题型:

【题目】意大利数学家斐波那契的《算经》中记载了一个有趣的问题:已知一对兔子每个月可以生一对兔子,而一对兔子出生后在第二个月就开始生小兔子.假如没有发生死亡现象,那么兔子对数依次为:1123581321345589144……,这就是著名的斐波那契数列,它的递推公式是,其中.若从该数列的前120项中随机地抽取一个数,则这个数是奇数的概率为(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)若只有个正整数解,求的取值范围;

(2)①求证:方程有唯一实根,且

②求的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】年上半年,随着新冠肺炎疫情在全球蔓延,全球超过个国家或地区宣布进人紧急状态,部分国家或地区直接宣布封国封城,随着国外部分活动进入停摆,全球经济缺乏活力,一些企业开始倒闭,下表为年第一季度企业成立年限与倒闭分布情况统计表:

企业成立年份

2019

2018

2017

2016

2015

企业成立年限

1

2

3

4

5

倒闭企业数量(万家)

5.23

4.70

3.72

3.12

2.42

倒闭企业所占比例

21.8%

19.6%

15.5%

13.0%

10.1%

根据上表,给出两种回归模型:

模型①:建立曲线型回归模型,求得回归方程为

模型②:建立线性回归模型.

1)根据所给的统计量,求模型②中关于的回归方程;

2)根据下列表格中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测年成立的企业中倒闭企业所占比例(结果保留整数).

回归模型

模型①

模型②

回归方程

参考公式:.

参考数据:.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线与直线只有一个公共点,点是抛物线上的动点.

1)求抛物线的方程;

2)①若,求证:直线过定点;

②若是抛物线上与原点不重合的定点,且,求证:直线的斜率为定值,并求出该定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱柱中,底面,点的中点,点为点关于直线的对称点,,.

1)求证:平面平面

2)直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系.

(Ⅰ)写出曲线C的普通方程和极坐标方程;

(Ⅱ)MN为曲线C.上两点,若OMON,求|MN|的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】为筛查在人群中传染的某种病毒,现有两种检测方法:

1)抗体检测法:每个个体独立检测,每一次检测成本为80元,每个个体收取检测费为100元.

2)核酸检测法:先合并个体,其操作方法是:当个体不超过10个时,把所有个体合并在一起进行检测.

当个体超过10个时,每10个个体为一组进行检测.若该组检测结果为阴性(正常),则只需检测一次;若该组检测结果为阳性(不正常),则需再对每个个体按核酸检测法重新独立检测,共需检测k+1次(k为该组个体数,1≤k≤10kN*).每一次检测成本为160元.假设在接受检测的个体中,每个个体的检测结果是阳性还是阴性相互独立,且每个个体是阳性结果的概率均为p0p1).

(Ⅰ)现有100个个体采取抗体检测法,求其中恰有一个检测出为阳性的概率;

(Ⅱ)因大多数人群筛查出现阳性的概率很低,且政府就核酸检测法给子检测机构一定的补贴,故检测机构推出组团选择核酸检测优惠政策如下:无论是检测一次还是k+1次,每组所有个体共收费700元(少于10个个体的组收费金额不变).已知某企业现有员工107人,准备进行全员检测,拟准备9000元检测费,由于时间和设备条件的限制,采用核酸检测法合并个体的组数不得高于参加采用抗体检测法人数,请设计一个合理的的检测安排方案;

(Ⅲ)设,现有nnN*2≤n≤10)个个体,若出于成本考虑,仅采用一种检测方法,试问检测机构应采用哪种检测方法?(ln3≈1.099ln4≈1.386ln5≈1.609ln6≈1.792

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在平面直角坐标系中,已知椭圆的离心率为为椭圆上位于第一象限上的点,为椭圆的上顶点,直线轴相交于点的面积为

)求椭圆的标准方程;

)设直线过椭圆的右焦点,且与椭圆相交于两点(在直线的同侧),若,求直线的方程.

查看答案和解析>>

同步练习册答案