科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为
(
为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为
.
(1)求曲线C的极坐标方程和直线l的直角坐标方程;
(2)若射线
与曲线C交于点A(不同于极点O),与直线l交于点B,求
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线
(
)上的两个动点
和
,焦点为F.线段AB的中点为
,且A,B两点到抛物线的焦点F的距离之和为8.
![]()
(1)求抛物线的标准方程;
(2)若线段AB的垂直平分线与x轴交于点C,求
面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是
的中点.
![]()
(1)设P是
上的一点,且AP⊥BE,求∠CBP的大小;
(2)当AB=3,AD=2时,求二面角E-AG-C的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校的一个社会实践调查小组,在对该校学生的良好“用眼习惯”的调查中,随机发放了120分问卷.对收回的100份有效问卷进行统计,得到如
下列联表:
做不到科学用眼 | 能做到科学用眼 | 合计 | |
男 | 45 | 10 | 55 |
女 | 30 | 15 | 45 |
合计 | 75 | 25 | 100 |
(1)现按女生是否能做到科学用眼进行分层,从45份女生问卷中抽取了6份问卷,从这6份问卷中再随机抽取3份,并记其中能做到科学用眼的问卷的份数
,试求随机变量
的分布列和数学期望;
(2)若在犯错误的概率不超过
的前提下认为良好“用眼习惯”与性别有关,那么根据临界值表,最精确的
的值应为多少?请说明理由.
附:独立性检验统计量
,其中
.
独立性检验临界值表:
| 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 1.323 | 2.072 | 2.706 | 3.840 | 5.024 |
查看答案和解析>>
科目: 来源: 题型:
【题目】下图是2020年2月15日至3月2日武汉市新增新冠肺炎确诊病例的折线统计图.则下列说法不正确的是( )
![]()
A.2020年2月19日武汉市新增新冠肺炎确诊病例大幅下降至三位数
B.武汉市在新冠肺炎疫情防控中取得了阶段性的成果,但防控要求不能降低
C.2020年2月19日至3月2日武汉市新增新冠肺炎确诊病例低于400人的有8天
D.2020年2月15日到3月2日武汉市新增新冠肺炎确诊病例最多的一天比最少的一天多1549人
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为
(
为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为
.
(1)求曲线C的极坐标方程和直线l的直角坐标方程;
(2)若射线
与曲线C交于点A(不同于极点O),与直线l交于点B,求
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线
(
)上的两个动点
和
,焦点为F.线段AB的中点为
,且A,B两点到抛物线的焦点F的距离之和为8.
![]()
(1)求抛物线的标准方程;
(2)若线段AB的垂直平分线与x轴交于点C,求
面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】端午节是我国民间为纪念爱国诗人屈原的一个传统节日.某市为了解端午节期间粽子的销售情况,随机问卷调查了该市1000名消费者在去年端午节期间的粽子购买量(单位:克),所得数据如下表所示:
购买量 |
|
|
|
|
|
人数 | 100 | 300 | 400 | 150 | 50 |
将烦率视为概率
(1)试求消费者粽子购买量不低于300克的概率;
(2)若该市有100万名消费者,请估计该市今年在端午节期间应准备多少千克棕子才能满足市场需求(以各区间中点值作为该区间的购买量).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com