科目: 来源: 题型:
【题目】为了提高生产效益,某企业引进了一批新的生产设备,为了解设备生产产品的质量情况,分别从新、旧设备所生产的产品中,各随机抽取100件产品进行质量检测,所有产品质量指标值均在以内,规定质量指标值大于30的产品为优质品,质量指标值在的产品为合格品,旧设备所生产的产品质量指标值如频率分布直方图所示,新设备所生产的产品质量指标值如频数分布表所示.
质量指标值 | 频数 |
2 | |
8 | |
20 | |
30 | |
25 | |
15 | |
合计 | 100 |
(1)请分别估计新、旧设备所生产的产品的优质品率.
(2)优质品率是衡量一台设备性能高低的重要指标,优质品率越高说明设备的性能越高,根据已知图表数据填写下面列联表(单位:件),并判断是否有的把握认为“产品质量高于新设备有关”.
非优质品 | 优质品 | 合计 | |
新设备产品 | |||
旧设备产品 | |||
合计 |
附:
P() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
,其中.
(3)已知每件产品的纯利润y(单位:元)与产品质量指标值t的关系式为若每台新设备每天可以生产1000件产品,买一台新设备需要80万元,请估计至少需要生产多少天方可以收回设备成本.
查看答案和解析>>
科目: 来源: 题型:
【题目】把函数的图象向右平移个单位长度,再把所得的函数图象上所有点的横坐标缩短到原来的(纵坐标不变)得到函数的图象,关于的说法有:①函数的图象关于点对称;②函数的图象的一条对称轴是;③函数在上的最上的最小值为;④函数上单调递增,则以上说法正确的个数是( )
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目: 来源: 题型:
【题目】《周髀算经》是我国古老的天文学和数学著作,其书中记载:一年有二十四个节气,每个节气晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测影子的长度),夏至、小暑、大暑、立秋、处暑、白露、秋分、寒露、霜降是连续的九个节气,其晷长依次成等差数列,经记录测算,这九个节气的所有晷长之和为49.5尺,夏至、大暑、处暑三个节气晷长之和为10.5尺,则立秋的晷长为( )
A.1.5尺B.2.5尺C.3.5尺D.4.5尺
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线,斜率为的直线交抛物线于,两点,当直线过点时,以为直径的圆与直线相切.
(1)求抛物线的方程;
(2)与平行的直线交抛物线于,两点,若平行线,之间的距离为,且的面积是面积的倍(O为坐标原点),求和的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】网购已成为当今消费者喜欢的购物方式.某机构对A、B、C、D四家同类运动服装网店的关注人数 x(千人)与其商品销售件数 y(百件)进行统计对比,得到如下表格:
由散点图知,可以用回归直线 来近似刻画它们之间的关系.
参考公式:
(1)求 y与 x的回归直线方程;
(2)在(1)的回归模型中,请用说明销售件数的差异有多大程度是由关注人数引起的?(精确到)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线 和点D(2,0),直线 与抛物线C交于不同两点A、B,直线BD与抛物线C交于另一点E.给出以下判断:
①直线OB与直线OE的斜率乘积为-2; ②轴; ③以BE为直径的圆与抛物线准线相切;
其中,所有正确判断的序号是( )
A.①②③B.①②C.①③D.②③
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数,为直线的倾斜角),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)写出曲线的直角坐标方程,并求时直线的普通方程;
(2)直线和曲线交于、两点,点的直角坐标为,求的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥中,平面,,,且,,
(1)求证:;
(2)在线段上,是否存在一点,使得二面角的大小为,如果存在,求与平面所成的角的正弦值,如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com