科目: 来源: 题型:
【题目】如图,
是圆柱体
的一条母线,
过底面圆的圆心
,
是圆
上不与
、
重合的任意一点,已知棱
,
,
.
![]()
(1)求异面直线
与平面
所成角的大小;
(2)将四面体
绕母线
旋转一周,求
三边旋转过程中所围成的几何体的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,定义
为两点
、
的“切比雪夫距离”,又设点
及
上任意一点
,称
的最小值为点
到直线
的“切比雪夫距离”,记作
,给出四个命题,正确的是________.
①对任意三点
、
、
,都有
;
② 到原点的“切比雪夫距离”等于
的点的轨迹是正方形;
③ 已知点
和直线
,则
;
④ 定点
、
,动点
满足
,则点
的轨迹与直线
(
为常数)有且仅有
个公共点.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列命题中真命题是( )
(1)在
的二项式展开式中,共有
项有理项;
(2)若事件
、
满足
,
,
,则事件
、
是相互独立事件;
(3)根据最近
天某医院新增疑似病例数据,“总体均值为
,总体方差为
”,可以推测“最近
天,该医院每天新增疑似病例不超过
人”.
A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)
查看答案和解析>>
科目: 来源: 题型:
【题目】关于函数
,给出以下四个命题:(1)当
时,
单调递减且没有最值;(2)方程
一定有实数解;(3)如果方程
(
为常数)有解,则解得个数一定是偶数;(4)
是偶函数且有最小值.其中假命题的序号是____________.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,
,
,动点
满足:直线
与直线
的斜率之积恒为
,记动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)若点
位于第一象限,过点
,
分别作直线
,直线
,直线
,
交于点
.
①若点
的横坐标为-1,求点
的坐标;
②直线
与曲线
交于点
,且
,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】孔子曰:温故而知新.数学学科的学习也是如此.为了调查数学成绩与及时复习之间的关系,某校志愿者展开了积极的调查活动:从高三年级640名学生中按系统抽样抽取40名学生进行问卷调查,所得信息如下:
数学成绩优秀(人数) | 数学成绩合格(人数) | |
及时复习(人数) | 20 | 4 |
不及时复习(人数) | 10 | 6 |
(1)张军是640名学生中的一名,他被抽中进行问卷调查的概率是多少(用分数作答);
(2)根据以上数据,运用独立性检验的基本思想,研究数学成绩与及时复习的相关性.
参考公式:
,其中
为样本容量
临界值表:
| 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目: 来源: 题型:
【题目】2019年1月1日新修订的个税法正式实施,规定:公民全月工资、薪金所得不超过5000元的部分不必纳税,超过5000元的部分为全月应纳税所得额.此项税款按下表分段累计计算(预扣):
全月应缴纳所得额 | 税率 |
不超过3000元的部分 |
|
超过3000元至12000元的部分 |
|
超过12000元至25000元的部分 |
|
国家在实施新个税时,考虑到纳税人的实际情况,实施了《个人所得税税前专项附加扣税暂行办法》,具体如下表:
项目 | 每月税前抵扣金额(元) | 说明 |
子女教育 | 1000 | 一年按12月计算,可扣12000元 |
继续教育 | 400 | 一年可扣除4800元,若是进行技能职业教育或者专业技术职业资格教育一年可扣除3600元 |
大病医疗 | 5000 | 一年最高抵扣金额为60000元 |
住房贷款利息 | 1000 | 一年可扣除12000元,若夫妻双方在同一城市工作,可以选择一方来扣除 |
住房租金 | 1500/1000/800 | 扣除金额需要根据城市而定 |
赡养老人 | 2000 | 一年可扣除24000元,若不是独生子女,子女平均扣除.赡养老人年龄需要在60周岁及以上 |
老李本人为独生子女,家里有70岁的老人需要赡养,有一个女儿正读高三,他每月还需缴纳住房贷款2734元.若2019年11月老李工资,薪金所得为20000元,按照《个人所得税税前专项附加扣税暂行办法》,则老李应缴纳税款(预扣)为______元.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(其中
为参数),曲线
的参数方程为
(其中
为参数),以原点
为极点,
轴的正半轴为极轴建立极坐标系.
(1)求曲线
、
的极坐标方程;
(2)射线
:
与曲线
,
分别交于点
,
(且点
,
均异于原点
),当
时,求
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com