科目: 来源: 题型:
【题目】已知
,给定
个整点
,其中
.
(Ⅰ)当
时,从上面的
个整点中任取两个不同的整点
,求
的所有可能值;
(Ⅱ)从上面
个整点中任取
个不同的整点,
.
(i)证明:存在互不相同的四个整点
,满足
,
;
(ii)证明:存在互不相同的四个整点
,满足
,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的离心率为
,以原点为圆心,椭圆
的短半轴长为半径的圆与直线
相切.
(Ⅰ)求椭圆方程;
(Ⅱ)设
为椭圆右顶点,过椭圆
的右焦点的直线
与椭圆
交于
,
两点(异于
),直线
,
分别交直线
于
,
两点. 求证:
,
两点的纵坐标之积为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】目前,中国有三分之二的城市面临“垃圾围城”的窘境. 我国的垃圾处理多采用填埋的方式,占用上万亩土地,并且严重污染环境. 垃圾分类把不易降解的物质分出来,减轻了土地的严重侵蚀,减少了土地流失. 2020年5月1日起,北京市将实行生活垃圾分类,分类标准为厨余垃圾、可回收物、有害垃圾和其它垃圾四类 .生活垃圾中有30%~40%可以回收利用,分出可回收垃圾既环保,又节约资源. 如:回收利用1吨废纸可再造出0.8吨好纸,可以挽救17棵大树,少用纯碱240千克,降低造纸的污染排放75%,节省造纸能源消耗40%~50%.
现调查了北京市5个小区12月份的生活垃圾投放情况,其中可回收物中废纸和塑料品的投放量如下表:
|
|
|
|
| |
废纸投放量(吨) | 5 | 5.1 | 5.2 | 4.8 | 4.9 |
塑料品投放量(吨) | 3.5 | 3.6 | 3.7 | 3.4 | 3.3 |
(Ⅰ)从
这5个小区中任取1个小区,求该小区12月份的可回收物中,废纸投放量超过5吨且塑料品投放量超过3.5吨的概率;
(Ⅱ)从
这5个小区中任取2个小区,记
为12月份投放的废纸可再造好纸超过4吨的小区个数,求
的分布列及期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱柱
中,
平面
,
,
,
的中点为
.
![]()
(Ⅰ)求证:
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)在棱
上是否存在点
,使得
平面
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在边长为
的等边三角形
中,点
分别是边
上的点,满足
且![]()
,将
沿直线
折到
的位置. 在翻折过程中,下列结论成立的是( )
A.在边
上存在点
,使得在翻折过程中,满足
平面![]()
B.存在
,使得在翻折过程中的某个位置,满足平面
平面![]()
C.若
,当二面角
为直二面角时,![]()
D.在翻折过程中,四棱锥
体积的最大值记为
,
的最大值为![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】对于在某个区间
上有意义的函数
,如果存在一次函数
使得对于任意的
,有
恒成立,则称函数
是函数
的一个弱渐近函数.
(1)若函数
是函数
在区间
上的一个弱渐近函数,求实数
的取值范围;
(2)证明:函数
是函数
在区间
上的弱渐近函数;
(3)试问:函数
与函数
(其中
为自然对数的底数)在区间
上是否存在相同的弱渐近函数?如果存在,请求出对应的弱渐近函数应满足的条件;如不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】设数列
满足
,
,
.
(1)求证:数列
为等比数列;
(2)对于大于
的正整数
、
(其中
),若
、
、
三个数经适当排序后能构成等差数列,求符合条件的数组
;
(3)若数列
满足
,是否存在实数
,使得数列
是单调递增数列?若存在,求出
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某景区欲建造同一水平面上的两条圆形景观步道
、
(宽度忽略不计),已知
,
(单位:米),要求圆
与
、
分别相切于点
、
,
与
、
分别相切于点
、
,且
.
(1)若
,求圆
、圆
的半径(结果精确到
米);
(2)若景观步道
、
的造价分别为每米
千元、
千元,如何设计圆
、圆
的大小,使总造价最低?最低总造价为多少(结果精确到
千元)?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com