科目: 来源: 题型:
【题目】已知命题
:“双曲线
任意一点
到直线
的距离分别记作
,则
为定值”为真命题.
(1)求出
的值.
(2)已知直线
关于y轴对称且使得
上的任意点到
的距离
满足
为定值,求
的方程.
(3)已知直线
是与(2)中某一条直线平行(或重合)且与椭圆
交于
两点,求
的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】由无理数引发的数学危机一直延续到19世纪,直到1872年,德国数学家戴德金提出了“戴德金分割”,才结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集
划分为两个非空的子集
与
,且满足
,
,
中的每一个元素都小于
中的每一个元素,则称
为戴德金分割.试判断,对于任一戴德金分割
,下列选项中不可能成立的是
A.
没有最大元素,
有一个最小元素
B.
没有最大元素,
也没有最小元素
C.
有一个最大元素,
有一个最小元素
D.
有一个最大元素,
没有最小元素
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
,
、
为椭圆的左、右焦点,
为椭圆上一点,且
.
(1)求椭圆的标准方程;
(2)设直线
,过点
的直线交椭圆于
、
两点,线段
的垂直平分线分别交直线
、直线
于
、
两点,当
最小时,求直线
的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】在棱长为2的正方体
中,点
是对角线
上的点(点
与
、
不重合),则下列结论正确的个数为( )
![]()
①存在点
,使得平面
平面
;
②存在点
,使得
平面
;
③若
的面积为
,则
;
④若
、
分别是
在平面
与平面
的正投影的面积,则存在点
,使得
.
A.1个B.2个C.3个D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com