相关习题
 0  265783  265791  265797  265801  265807  265809  265813  265819  265821  265827  265833  265837  265839  265843  265849  265851  265857  265861  265863  265867  265869  265873  265875  265877  265878  265879  265881  265882  265883  265885  265887  265891  265893  265897  265899  265903  265909  265911  265917  265921  265923  265927  265933  265939  265941  265947  265951  265953  265959  265963  265969  265977  266669 

科目: 来源: 题型:

【题目】经过多年的运作,双十一抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2014双十一网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在双十一的销售量p万件与促销费用x万元满足(其中a为正常数).已知生产该产品还需投入成本万元(不含促销费用),产品的销售价格定为

元/件,假定厂家的生产能力完全能满足市场的销售需求.

(1)将该产品的利润y万元表示为促销费用x万元的函数;

(2)促销费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】设双曲线方程为,过其右焦点且斜率不为零的直线与双曲线交于AB两点,直线的方程为AB在直线上的射影分别为CD.

1)当垂直于x轴,时,求四边形的面积;

2的斜率为正实数,A在第一象限,B在第四象限,试比较1的大小;

3)是否存在实数,使得对满足题意的任意,直线和直线的交点总在轴上,若存在,求出所有的值和此时直线交点的位置;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】设数列满足,其中AB是两个确定的实数,

1)若,求的前n项和;

2)证明:不是等比数列;

3)若,数列中除去开始的两项外,是否还有相等的两项,并证明你的结论.

查看答案和解析>>

科目: 来源: 题型:

【题目】如题所示:扇形ABC是一块半径为2千米,圆心角为60°的风景区,P点在弧BC上,现欲在风景区中规划三条三条商业街道PQQRRP,要求街道PQAB垂直,街道PRAC垂直,直线PQ表示第三条街道。

(1)如果P位于弧BC的中点,求三条街道的总长度;

(2)由于环境的原因,三条街道PQPRQR每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?(精确到1万元)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方体中,PQ分别是棱的中点.

1)求异面直线所成角的大小;

2)求以PQ四点为四个顶点的四面体的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】市场上有一种新型的强力洗衣粉,特点是去污速度快,已知每投放)个单位的洗衣粉液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间(分钟)变化的函数关系式近似为,其中,若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和,根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起有效去污的作用.

1)若只投放一次4个单位的洗衣液,则有效去污时间可能达几分钟?

2)若先投放2个单位的洗衣液,6分钟后投放个单位的洗衣液,要使接下来的4分钟中能够持续有效去污,试求的最小值(精确到0.1,参考数据: .

查看答案和解析>>

科目: 来源: 题型:

【题目】在三棱锥中,BOAOCO所在直线两两垂直,且AO=CO,∠BAO=60°EAC的中点,三棱锥的体积为

(1)求三棱锥的高;

(2)在线段AB上取一点D,当D在什么位置时,的夹角大小为

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,是两个垃圾中转站,的正东方向千米处,的南面为居民生活区.为了妥善处理生活垃圾,政府决定在的北面建一个垃圾发电厂.垃圾发电厂的选址拟满足以下两个要求(可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点到直线的距离要尽可能大).现估测得两个中转站每天集中的生活垃圾量分别约为吨和吨.设

1)求(用的表达式表示);

2)垃圾发电厂该如何选址才能同时满足上述要求?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的长轴长是短轴长的两倍,焦距为

1)求椭圆的标准方程;

2)不过原点的直线与椭圆交于两点,且直线的斜率依次成等比数列,问:直线是否定向的,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列是公差的等差数列,且

1)求的前项的和

2)若,问在数列中是否存在一项是正整数),使得成等比数列,若存在,求出的值,若不存在,请说明理由;

3)若存在自然数是正整数),满足,使得成等比数列,求所有整数的值.

查看答案和解析>>

同步练习册答案