科目: 来源: 题型:
【题目】甲、乙、丙三家企业产品的成本分别为10000,12000,15000,其成本构成如下图所示,则关于这三家企业下列说法错误的是( )
![]()
A.成本最大的企业是丙企业B.费用支出最高的企业是丙企业
C.支付工资最少的企业是乙企业D.材料成本最高的企业是丙企业
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
,函数
.
(1)若
,证明:函数
在区间
上是单调增函数;
(2)求函数
在区间
上的最大值;
(3)若函数
的图像过原点,且
的导数
,当
时,函数
过点
的切线至少有2条,求实数
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥
中,
平面
,底面
是直角梯形,其中
,
,
,
,
为棱
上的点,且
.
![]()
(1)求证:
平面
;
(2)求二面角
的余弦值;
(3)设
为棱
上的点(不与
,
重合),且直线
与平面
所成角的正弦值为
,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校为了普及环保知识,增强学生的环保意识,在全校组织了一次有关环保知识的竞赛,经过初赛、复赛,甲、乙两个代表队(每队
人)进入了决赛,规定每人回答一个问题,答对为本队赢得
分,答错得
分,假设甲队中每人答对的概率均为
,乙队中
人答对的概率分別为
,且各人回答正确与否相互之间没有影响,用
表示乙队的总得分.
(1)求
的分布列;
(2)求甲、乙两队总得分之和等于
分且甲队获胜的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】
给定椭圆
,称圆心在原点
,半径为
的圆是椭圆C的“准圆”.若椭圆C的一个焦点为
,其短轴上的一个端点到F的距离为
.
(I)求椭圆C的方程和其“准圆”方程;
(II )点P是椭圆C的“准圆”上的一个动点,过点P作直线
,使得
与椭圆C都只有一个交点,且
分别交其“准圆”于点M,N.
(1)当P为“准圆”与
轴正半轴的交点时,求
的方程;
(2)求证:|MN|为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列命题是真命题的是( )
A.有两个面相互平行,其余各面都是平行四边形的多面体是棱柱
B.正四面体是四棱锥
C.有一个面是多边形,其余各面都是三角形的多面体叫做棱锥
D.正四棱柱是平行六面体
查看答案和解析>>
科目: 来源: 题型:
【题目】设数列
的前n项和为
,且![]()
,
(1)求![]()
![]()
的值,并求出
及数列
的通项公式;
(2)设
求数列
的前n项和![]()
(3)设![]()
在数列
中取出
(
为常数)项,按照原来的顺序排成一列,构成等比数列
.若对任意的数列
,均有
试求
的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线
是双曲线
的一条渐近线,点![]()
都在双曲线
上,直线
与
轴相交于点
,设坐标原点为
.
(1)求双曲线
的方程,并求出点
的坐标(用
表示);
(2)设点
关于
轴的对称点为
,直线
与
轴相交于点
.问:在
轴上是否存在定点
,使得
?若存在,求出点
的坐标;若不存在,请说明理由.
(3)若过点
的直线
与双曲线
交于
两点,且
,试求直线
的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列
的各项均为整数,其前n项和为
.规定:若数列
满足前r项依次成公差为1的等差数列,从第
项起往后依次成公比为2的等比数列,则称数列
为“r关联数列”.
(1)若数列
为“6关联数列”,求数列
的通项公式;
(2)在(1)的条件下,求出
,并证明:对任意
,
;
(3)若数列
为“6关联数列”,当
时,在
与
之间插入n个数,使这
个数组成一个公差为
的等差数列,求
,并探究在数列
中是否存在三项
,
,
其中m,k,p成等差数列)成等比数列?若存在,求出这样的三项;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com