【题目】
给定椭圆
,称圆心在原点
,半径为
的圆是椭圆C的“准圆”.若椭圆C的一个焦点为
,其短轴上的一个端点到F的距离为
.
(I)求椭圆C的方程和其“准圆”方程;
(II )点P是椭圆C的“准圆”上的一个动点,过点P作直线
,使得
与椭圆C都只有一个交点,且
分别交其“准圆”于点M,N.
(1)当P为“准圆”与
轴正半轴的交点时,求
的方程;
(2)求证:|MN|为定值.
【答案】(I)
;(II )(1)
;(2)见解析
【解析】
(I)因为
,所以
所以椭圆的方程为
,
准圆的方程为
.
(II)(1)因为准圆
与
轴正半轴的交点为P(0,2),
设过点P(0,2),且与椭圆有一个公共点的直线为
,
所以
,消去y,得到
,
因为椭圆与
只有一个公共点,
所以
,
解得
.
所以
方程为
.
(2)①当
中有一条无斜率时,不妨设
无斜率,
因为
与椭圆只有一个公共点,则其方程为
或
,
当
方程为
时,此时
与准圆交于点
,
此时经过点
(或
)且与椭圆只有一个公共点的直线是
(或
),即
为
(或
),显然直线
垂直;
同理可证
方程为
时,直线
垂直.
②当
都有斜率时,设点
,其中
,
设经过点
与椭圆只有一个公共点的直线为
,
则
,消去
得到
,
即
,
,
经过化简得到:
,
因为
,所以有
,
设
的斜率分别为
,因为
与椭圆都只有一个公共点,
所以
满足上述方程
,
所以
,即
垂直.
综合①②知:因为
经过点
,又分别交其准圆于点M,N,且
垂直,
所以线段MN为准圆
的直径,所以|MN|=4.
科目:高中数学 来源: 题型:
【题目】某沿海城市的海边有两条相互垂直的直线型公路
、
,海岸边界
近似地看成一条曲线段.为开发旅游资源,需修建一条连接两条公路的直线型观光大道
,且直线
与曲线
有且仅有一个公共点P(即直线与曲线相切),如图所示.若曲线段
是函数
图像的一段,点M到
、
的距离分别为8千米和1千米,点N到
的距离为10千米,点P到
的距离为2千米.以
、
分别为x,y轴建立如图所示的平面直角坐标系
.
![]()
(1)求曲线段
的函数关系式,并指出其定义域;
(2)求直线
的方程,并求出公路
的长度(结果精确到1米).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在坐标原点,且经过点
,它的一个焦点与抛物线E:
的焦点重合,斜率为k的直线l交抛物线E于A、B两点,交椭圆
于C、D两点.
(1)求椭圆
的方程;
(2)直线l经过点
,设点
,且
的面积为
,求k的值;
(3)若直线l过点
,设直线
,
的斜率分别为
,
,且
,
,
成等差数列,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三家企业产品的成本分别为10000,12000,15000,其成本构成如下图所示,则关于这三家企业下列说法错误的是( )
![]()
A.成本最大的企业是丙企业B.费用支出最高的企业是丙企业
C.支付工资最少的企业是乙企业D.材料成本最高的企业是丙企业
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,其左右顶点分别为
,
,上下顶点分别为
,
.圆
是以线段
为直径的圆.
(1)求圆
的方程;
(2)若点
,
是椭圆上关于
轴对称的两个不同的点,直线
,
分别交
轴于点![]()
,求证:
为定值;
(3)若点
是椭圆Γ上不同于点
的点,直线
与圆
的另一个交点为
.是否存在点
,使得
?若存在,求出点
的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】李克强总理在很多重大场合都提出“大众创业,万众创新”.某创客,白手起家,2015年一月初向银行贷款十万元做创业资金,每月获得的利润是该月初投入资金的
.每月月底需要交纳房租和所得税共为该月全部金额(包括本金和利润)的
,每月的生活费等开支为3000元,余款全部投入创业再经营.如此每月循环继续.
(1)问到2015年年底(按照12个月计算),该创客有余款多少元?(结果保留至整数元)
(2)如果银行贷款的年利率为
,问该创客一年(12个月)能否还清银行贷款?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com