科目: 来源: 题型:
【题目】某品牌奶茶公司计划在A地开设若干个连锁加盟店,经调查研究,加盟店的个数x与平均每个店的月营业额y(万元)具有如下表所示的数据关系:
x | 2 | 4 | 6 | 8 | 10 |
y | 20.9 | 20.2 | 19 | 17.8 | 17.1 |
(1)求y关于x的线性回归方程;
(2)根据(1)中的结果分析,为了保证平均每个加盟店的月营业额不少于14.6万元,则A地开设加盟店的个数不能超过几个?
参考公式:线性回归方程
中的斜率和截距的最小二乘估计公式分别为
,![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知平面直角坐标系
中,直线
的参数方程为
(
为参数).以原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,且直线
与曲线
交于
、
两点.
(1)求实数
的取值范围;
(2)若
,点
,求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】近年来,随着
网络的普及和智能手机的更新换代,各种方便的
相继出世,其功能也是五花八门.某大学为了调查在校大学生使用
的主要用途,随机抽取了
名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:
①可以估计使用
主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;
②可以估计不足
的大学生使用
主要玩游戏;
③可以估计使用
主要找人聊天的大学生超过总数的
.
其中正确的个数为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】数列
与
满足
,
,
是数列
的前
项和(
).
(1)设数列
是首项和公比都为
的等比数列,且数列
也是等比数列,求
的值;
(2)设
,若
且
对
恒成立,求
的取值范围;
(3)设
,
,
(
,
),若存在整数
,
,且
,使得
成立,求
的所有可能值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知双曲线
:
的焦距为
,直线
(
)与
交于两个不同的点
、
,且
时直线
与
的两条渐近线所围成的三角形恰为等边三角形.
(1)求双曲线
的方程;
(2)若坐标原点
在以线段
为直径的圆的内部,求实数
的取值范围;
(3)设
、
分别是
的左、右两顶点,线段
的垂直平分线交直线
于点
,交直线
于点
,求证:线段
在
轴上的射影长为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某居民小区为缓解业主停车难的问题,拟对小区内一块扇形空地
进行改建.如图所示,平行四边形
区域为停车场,其余部分建成绿地,点
在围墙
弧上,点
和点
分别在道路
和道路
上,且
米,
,设
.
![]()
(1)求停车场面积
关于
的函数关系式,并指出
的取值范围;
(2)当
为何值时,停车场面积
最大,并求出最大值(精确到
平方米).
查看答案和解析>>
科目: 来源: 题型:
【题目】若
、
两点分别在函数
与
的图像上,且关于直线
对称,则称
、
是
与
的一对“伴点”(
、
与
、
视为相同的一对).已知
,
,若
与
存在两对“伴点”,则实数
的取值范围为________.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线
和圆
,抛物线
的焦点为
.
![]()
(1)求
的圆心到
的准线的距离;
(2)若点
在抛物线
上,且满足
, 过点
作圆
的两条切线,记切点为
,求四边形
的面积的取值范围;
(3)如图,若直线
与抛物线
和圆
依次交于
四点,证明:
的充要条件是“直线
的方程为
”
查看答案和解析>>
科目: 来源: 题型:
【题目】某地实行垃圾分类后,政府决定为
三个小区建造一座垃圾处理站M,集中处理三个小区的湿垃圾.已知
在
的正西方向,
在
的北偏东
方向,
在
的北偏西
方向,且在
的北偏西
方向,小区
与
相距
与
相距
.
![]()
(1)求垃圾处理站
与小区
之间的距离;
(2)假设有大、小两种运输车,车在往返各小区、处理站之间都是直线行驶,一辆大车的行车费用为每公里
元,一辆小车的行车费用为每公里
元(其中
为满足
是
内的正整数) .现有两种运输湿垃圾的方案:
方案1:只用一辆大车运输,从
出发,依次经
再由
返回到
;
方案2:先用两辆小车分别从
运送到
,然后并各自返回到
,一辆大车从
直接到
再返回到
.试比较哪种方案更合算?请说明理由. 结果精确到小数点后两位
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com