科目: 来源: 题型:
【题目】新中国成立70周年以来,党中央国务院高度重视改善人民生活,始终把提高人民生活水平作为一切工作的出发点和落脚点城乡居民收入大幅增长,居民生活发生了翻天覆地的变化.下面是1949年及2015年~2018年中国居民人均可支配收入(元)统计图.以下结论中不正确的是( )
![]()
A.20l5年-2018年中国居民人均可支配收入与年份成正相关
B.2018年中居民人均可支配收入超过了1949年的500倍
C.2015年-2018年中国居民人均可支配收入平均超过了24000元
D.2015年-2018年中围居民人均可支配收入都超过了1949年的500倍
查看答案和解析>>
科目: 来源: 题型:
【题目】《算法统宗》全称《新编直指算法统宗》,是屮国古代数学名著,程大位著.书中有如下问题:“今有五人均银四十两,甲得十两四钱,戊得五两六钱.问:次第均之,乙丙丁各该若干?”意思是:有5人分40两银子,甲分10两4钱,戊分5两6钱,且相邻两项差相等,则乙丙丁各分几两几钱?(注:1两等于10钱)( )
A.乙分8两,丙分8两,丁分8两B.乙分8两2钱,丙分8两,丁分7两8钱
C.乙分9两2钱,丙分8两,丁分6两8钱D.乙分9两,丙分8两,丁分7两
查看答案和解析>>
科目: 来源: 题型:
【题目】某快递公司收取快递费用的标准是:重量不超过
的包裹收费
元;重量超过
的包裹,除
收费
元之外,超过
的部分,每超出
(不足
,按
计算)需再收
元.该公司将最近承揽的
件包裹的重量统计如下:
包裹重量(单位: |
|
|
|
|
|
包裹件数 |
|
|
|
|
|
公司对近
天,每天揽件数量统计如下表:
包裹件数范围 |
|
|
|
|
|
包裹件数 (近似处理) |
|
|
|
|
|
天数 |
|
|
|
|
|
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来
天内恰有
天揽件数在
之间的概率;
(2)(i)估计该公司对每件包裹收取的快递费的平均值;
(ii)公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员
人,每人每天揽件不超过
件,工资
元.公司正在考虑是否将前台工作人员裁减
人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:极坐标与参数方程
在平面直角坐标系
中,曲线
的参数方程为
(
为参数).
(1)求曲线
的普通方程;
(2)经过点
(平面直角坐标系
中点)作直线
交曲线
于
,
两点,若
恰好为线段
的三等分点,求直线
的斜率.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司欲对员工饮食习惯进行一次调查,从某科室的100人中的饮食结构调查结果统计如下表.
主食蔬菜 | 主食肉类 | 总计 | |
不超过45岁 | 15 | 40 | |
45岁以上 | 20 | ||
总计 |
(1)完成
列联表,并判断能否有99%的把握认为员工的饮食习惯与年龄有关?
(2)在45岁以上员工中按照饮食习惯进行分层抽样抽出一个容量为6的样本,从这6个人中随机抽取3个人,求这3个人都主食蔬菜的概率.
附:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目: 来源: 题型:
【题目】设数列
的前
项和为
,对于任意的
,都有
.
(1)求数列
的首项
及数列的递推关系式
;
(2)若数列
成等比数列,求常数
的值,并求数列
的通项公式;
(3)数列
中是否存在三项
、
、
,它们组成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在直角坐标系
中,点
到抛物线
的准线的距离为
,点
是
上的定点,
、
是
上的两个动点,且线段
的中点
在线段
上.
![]()
(1)抛物线
的方程及
的值;
(2)当点
、
分别在第一、四象限时,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
是定义在
上的函数,满足
.
(1)证明:2是函数
的周期;
(2)当
时,
,求
在
时的解析式,并写出
在
(
)时的解析式;
(3)对于(2)中的函数
,若关于x的方程
恰好有20个解,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题满分13分)如图,在直角坐标系
中,角
的顶点是原点,始边与
轴正半轴重合.终边交单位圆于点
,且
,将角
的终边按逆时针方向旋转
,交单位圆于点
,记
.
![]()
(1)若
,求
;
(2)分别过
作
轴的垂线,垂足依次为
,记
的面积为
,
的面积为
,若
,求角
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com