相关习题
 0  266269  266277  266283  266287  266293  266295  266299  266305  266307  266313  266319  266323  266325  266329  266335  266337  266343  266347  266349  266353  266355  266359  266361  266363  266364  266365  266367  266368  266369  266371  266373  266377  266379  266383  266385  266389  266395  266397  266403  266407  266409  266413  266419  266425  266427  266433  266437  266439  266445  266449  266455  266463  266669 

科目: 来源: 题型:

【题目】在某区“创文明城区”(简称“创城”)活动中,教委对本区四所高中学校按各校人数分层抽样,随机抽查了100人,将调查情况进行整理后制成下表:

学校

抽查人数

50

15

10

25

“创城”活动中参与的人数

40

10

9

15

(注:参与率是指:一所学校“创城”活动中参与的人数与被抽查人数的比值)假设每名高中学生是否参与”创城”活动是相互独立的.

(1)若该区共2000名高中学生,估计学校参与“创城”活动的人数;

(2)在随机抽查的100名高中学生中,随机抽取1名学生,求恰好该生没有参与“创城”活动的概率;

(3)在上表中从两校没有参与“创城”活动的同学中随机抽取2人,求恰好两校各有1人没有参与“创城”活动的概率是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知奇函数是定义在R上的单调函数,若函数恰有个零点,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,已知圆的参数方程为为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,设圆与圆的公共弦所在直线为.

1)求直线的极坐标方程;

2)若以坐标原点为中心,直线顺时针方向旋转后与圆、圆分别在第一象限交于两点,求.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱柱中,,侧面是边长为2的正方形,点分别是线段的中点,且.

1)证明:平面平面

2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)讨论函数的零点个数;

2)若为给定的常数,且),记在区间上的最小值为,求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】设直线与直线分别与椭圆交于点,且四边形的面积为.

1)求椭圆的方程;

2)设过点的动直线与椭圆相交于两点,是否存在经过原点,且以为直径的圆?若有,请求出圆的方程,若没有,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧,并将两弧各五等分,分点依次为以及.一只蚂蚁欲从点出发,沿正方体的表面爬行至,则其爬行的最短距离为________.参考数据:

查看答案和解析>>

科目: 来源: 题型:

【题目】材料一:2018年,全国逾半省份将从秋季入学的高一年级开始实行新的学业水平考试和高考制度.所有省级行政区域均突破文理界限,由学生跨文理选科,均设 置“”的考试科目.前一个“3”为必考科目,为统一高考科目语文、数学、外语.除个别省级行政区域仍执行教育部委托的分省命题任务外,绝大部分省级行政区域均由教育部考试中心统一命题;后一个“3”为高中学业水平考试(简称“学考”)选考科目,由各省级行政区域自主命题.材料二:20194月,河北、辽宁、江苏、福建、湖北、湖南、广东、重庆等8省市发布高考综合改革实施方案,方案决定从2018年秋季入学的高中一年级学生开始实施高考综合改革.考生总成绩由全国统一高考的语文、数学、外语3个科目成绩和考生选择的3科普通高中学业水平选择性考试科目成绩组成,满分为750分.即通常所说的“”模式,所谓“”,即“3”是三门主科,分别是语文、数学、外语,这三门科目是必选的.“1”指的是要在物理、历史里选一门,按原始分计入成绩.“2”指考生要在生物、化学、思想政治、地理4门中选择2门.但是这几门科目不以原始分计入成绩,而是等级赋分.等级赋分指的是把考生的原始成绩根据人数的比例分为五个等级,五个等级分别对应着相应的分数区间,然后再用公式换算,转换得出分数.

1)若按照“”模式选科,求选出的六科中含有“语文,数学,外语,物理,化学”的概率.

2)某教育部门为了调查学生语数外三科成绩与选科之间的关系,现从当地不同层次的学校中抽取高一学生2500名参加语数外的网络测试,满分450分,并给前400名颁发荣誉证书,假设该次网络测试成绩服从正态分布,且满分为450分;

①考生甲得知他的成绩为270分,考试后不久了解到如下情况:“此次测试平均成绩为171分,351分以上共有57人”,问甲能否获得荣誉证书,请说明理由;

②考生丙得知他的实际成绩为430分,而考生乙告诉考生丙:“这次测试平均成绩为201分,351分以上共有57人”,请结合统计学知识帮助丙同学辨别乙同学 信息的真伪.

附:.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知双曲线的左、右焦点分别为,过作一条直线与其两条渐近线交于两点,若为等腰直角三角形,记双曲线的离心率为,则______________.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,为等腰直角三角形,DAC上一点,将沿BD折起,得到三棱锥,且使得在底面BCD的投影E在线段BC上,连接AE.

1)证明:

2)若,求二面角的余弦值.

查看答案和解析>>

同步练习册答案