【题目】如图,
为等腰直角三角形,
,D为AC上一点,将
沿BD折起,得到三棱锥
,且使得
在底面BCD的投影E在线段BC上,连接AE.
![]()
(1)证明:
;
(2)若
,求二面角
的余弦值.
科目:高中数学 来源: 题型:
【题目】对于数列
、
,把和
叫做数列
与
的前
项泛和,记作为
.已知数列
的前
项和为
,且
.
(1)求数列
的通项公式;
(2)数列
与数列
的前
项的泛和为
,且
恒成立,求实数
的取值范围;
(3)从数列
的前
项中,任取
项从小到大依次排列,得到数列
、
、
、
;再将余下的
项从大到小依次排列,得到数列
、
、
、
.求数列
与数列
的前
项的泛和![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD﹣A1B1C1D1中,E为D1D的中点,AC与BD的交点为O.
![]()
(1)求证:EO⊥平面AB1C;
(2)在由正方体的顶点确定的平面中,是否存在与平面AB1C平行的平面?证明你的结论
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
是定义在R上的奇函数,当
时,
,给出下列命题:
①当
时,
;
②函数
有2个零点;
③
的解集为
;
④
,
,都有
.
其中真命题的个数为( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共享单车的投放,方便了市民短途出行,被誉为中国“新四大发明”之一.某市为研究单车用户与年龄的相关程度,随机调查了100位成人市民,统计数据如下:
不小于40岁 | 小于40岁 | 合计 | |
单车用户 | 12 | 18 | 30 |
非单车用户 | 38 | 32 | 70 |
合计 | 50 | 50 | 100 |
(1)从独立性检验角度分析,能否有
以上的把握认为该市成人市民是否为单车用户与年龄是否小于40岁有关;
(2)将此样本的频率做为概率,从该市单车用户中随机抽取3人,记不小于40岁的单车用户的人数为
,求
的分布列与数学期望.
下面临界值表供参考:
P( | 0.15 | 0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:
,其中
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,有下列四个命题:
①函数
是奇函数;
②函数
在
是单调函数;
③当
时,函数
恒成立;
④当
时,函数
有一个零点,
其中正确的是____________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数
的图象向左平移
个单位,然后纵坐标不变,横坐标变为原来的
倍,得到
的图象,下面四个结论正确的是( )
A. 函数
在区间
上为增函数
B. 将函数
的图象向右平移
个单位后得到的图象关于原点对称
C. 点
是函数
图象的一个对称中心
D. 函数
在
上的最大值为![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com