科目: 来源: 题型:
【题目】已知椭圆
:
的左、右焦点分别为
,
,过
且垂直于
轴的焦点弦的弦长为
,过
的直线
交椭圆
于
,
两点,且
的周长为
.
(1)求椭圆
的方程;
(2)已知直线
,
互相垂直,直线
过
且与椭圆
交于点
,
两点,直线
过
且与椭圆
交于
,
两点.求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的离心率为
,短轴长为4.
(1)求椭圆C的标准方程.
(2)设直线l过点(2,0)且与椭圆C相交于不同的两点A、B,直线
与x轴交于点D,E是直线
上异于D的任意一点,当
时,直线BE是否恒过x轴上的定点?若过,求出定点坐标,若不过,请说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱锥
中,N为CD的中点,M是AC上一点.
![]()
(1)若M为AC的中点,求证:AD//平面BMN;
(2)若
,平面
平面BCD,
,求直线AC与平面BMN所成的角的余弦值。
查看答案和解析>>
科目: 来源: 题型:
【题目】某冰糖橙,甜橙的一种,云南著名特产,以味甜皮薄著称。该橙按照等级可分为四类:珍品、特级、优级和一级(每箱有5kg),某采购商打算订购一批橙子销往省外,并从采购的这批橙子中随机抽取100箱,利用橙子的等级分类标准得到的数据如下表:
等级 | 珍品 | 特级 | 优级 | 一级 |
箱数 | 40 | 30 | 10 | 20 |
(1)若将频率改为概率,从这100箱橙子中有放回地随机抽取4箱,求恰好抽到2箱是一级品的概率:
(2)利用样本估计总体,庄园老板提出两种购销方案供采购商参考:
方案一:不分等级卖出,价格为27元/kg;
方案二:分等级卖出,分等级的橙子价格如下:
等级 | 珍品 | 特级 | 优级 | 一级 |
售价(元/kg) | 36 | 30 | 24 | 18 |
从采购商的角度考虑,应该采用哪种方案?
(3)用分层抽样的方法从这100箱橙子中抽取10箱,再从抽取的10箱中随机抽取3箱,X表示抽取的是珍品等级,求x的分布列及数学期望E(X).
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线
:
,(
为参数),将曲线
上的所有点的横坐标缩短为原来的
,纵坐标缩短为原来的
后得到曲线
,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为
。
(1)求曲线
的极坐标方程和直线l的直角坐标方程;
(2)设直线l与曲线
交于不同的两点A,B,点M为抛物线
的焦点,求
的值。
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆
的右焦点为
,过
作
轴的垂线交椭圆
于点
(点
在
轴上方),斜率为
的直线交椭圆
于
,
两点,过点
作直线
交椭圆
于点
,且
,直线
交
轴于点
.
(1)设椭圆
的离心率为
,当点
为椭圆
的右顶点时,
的坐标为
,求
的值.
(2)若椭圆
的方程为
,且
,是否存
在使得
成立?如果存在,求出
的值;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com