9£®ÈçͼËùʾ£¬ÔÚxOyÆ½ÃæÄÚÓÐÁ½¸öÓнç´Å³¡£¬´Å¸ÐӦǿ¶È´óB1=B£¬B2=$\frac{B}{2}$£¬ËüÃǵı߽çÏßÓëyÖḺ·½Ïò³Éijһ½Ç¶È¦È£¬ÖÊÁ¿Îªm´øµçÁ¿Îª+qµÄÁ£×Ó£¬ÒÔËÙ¶Èv´ÓyÖáÉϵÄAµãÑØxÖáÕý·½ÏòÈëÉ䣬ÒÑÖª$\overline{OA}$=$\frac{mv}{2qB}$£¬Á£×ÓµÚ¶þ´Î¾­¹ýxÖáʱËÙ¶È·½ÏòÓëxÖá´¹Ö±£®²»¼ÆÁ£×ÓÖØÁ¦£®Çó£º
£¨1£©µÚ¶þ´Î¾­¹ýxÖáʱµÄ×ø±ê£»
£¨2£©tan¦ÈµÄÖµÒÔ¼°´ÓAµã³ö·¢µ½µÚ¶þ´Î¾­¹ýxÖáËù¾­ÀúµÄʱ¼ä£»
£¨3£©ÔÚµÚ¶þÏóÏÞµÄÄ³ÇøÓòÄÚ£¨°üº¬³öÉäµã£©¼ÓÒ»ÔÈÇ¿µç³¡£¬Ê¹Á£×ÓÒÔÓë³ö·¢Ê±ÏàͬµÄËÙ¶ÈÓֻص½Aµã£®ÇóËù¼Óµç³¡µÄ×îСֵºÍ·½Ïò£®

·ÖÎö ¸ù¾ÝÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦Çó³öÔÚÁ½´Å³¡Öеİ뾶£¬»­³öÂú×ãÌâÒâµÄÔ˶¯¹ì¼££¬°ë¾¶${R}_{2}^{\;}$ÊÇ${R}_{1}^{\;}$µÄÁ½±¶£¬¸ù¾Ý¼¸ºÎ¹ØÏµÇó³ö¼Ð½ÇºÍ±ß£¬¿ÉÒÔºÜ˳ÀûµÄÇó³ö½»µã×ø±ê£¬Çóʱ¼äÕÒ³öÁ½¶ÎÔ²»¡¶ÔµÄÔ²ÐĽǣ¬ÀûÓÃ$t=\frac{¦È}{360}T$Çó½â£¬×îºóÒ»Îʶ¯Äܶ¨Àí·ÖÎö³öµç³¡Á¦Ã»ÓÐ×ö¹¦£¬³öÉäµãºÍAµãÔÚÒ»µÈÊÆÃæÉÏ£¬ÔËÓÃÔ˶¯µÄºÏ³ÉÓë·Ö½â˳ÀûÇó½â

½â´ð ½â£º£¨1£©´øµçÁ£×ÓÔÚÔÈÇ¿´Å³¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦$qvB=m\frac{{v}_{\;}^{2}}{R}$µÃ$R=\frac{mv}{qB}$£¬ÔÚ${B}_{1}^{\;}$´Å³¡Öа뾶${R}_{1}^{\;}=\frac{mv}{qB}$£¬${B}_{2}^{\;}$´Å³¡Öа뾶${R}_{2}^{\;}=\frac{2mv}{qB}$£¬»­³ö´øµçÁ£×ÓµÄÔ˶¯¹ì¼£Í¼£¬Èçͼ
ÔڴŸÐӦǿ¶ÈΪ${B}_{1}^{\;}$µÄÔÈÇ¿´Å³¡ÖУ¬Ô²ÐÄÔÚB£¬°ë¾¶${R}_{1}^{\;}$£¬ÔڴŸÐӦǿ¶ÈΪ${B}_{2}^{\;}$µÄÔÈÇ¿´Å³¡ÖУ¬Ô²ÐÄΪC£¬°ë¾¶${R}_{2}^{\;}$
¸ù¾ÝÌâÒâÖª$\overline{OA}=\frac{mv}{2qB}$£¬ÓÉ$\overline{OB}=\frac{mv}{2qB}$£¬$\overline{OC}=\frac{\sqrt{3}}{2}\frac{mv}{qB}$
µÚ¶þ´Î¾­¹ýxÖáʱµÄ½»µãµ½Ô­µãµÄ¾àÀë${R}_{2}^{\;}+\overline{OC}=\frac{2mv}{qB}+\frac{\sqrt{3}}{2}\frac{mv}{qB}=\frac{mv}{2qB}£¨4+\sqrt{3}£©$
ËùÒÔµÚ¶þ´Î¾­¹ýxÖáµÄ×ø±ê$£¨-\frac{mv}{2qB}£¨4+\sqrt{3}£©£¬0£©$
£¨2£©Óɼ¸ºÎ¹ØÏµÖª¡ÏOBC=60¡ã£¬ËùÒÔ$tan¦È=\frac{{R}_{1}^{\;}sin60¡ã}{\overline{OB}+{R}_{1}^{\;}cos60¡ã}=\frac{\sqrt{3}}{2}$
Óɼ¸ºÎ¹ØÏµÖª£¬ÔÚ${B}_{1}^{\;}$´Å³¡ÖеÄÔ²ÐĽÇ120¡ã£¬ÔÚ${B}_{2}^{\;}$´Å³¡ÖеÄÔ²ÐĽÇ150¡ã
${t}_{1}^{\;}=\frac{120¡ã}{360¡ã}{T}_{1}^{\;}=\frac{1}{3}\frac{2¦Ðm}{qB}=\frac{2¦Ðm}{3qB}$£¬${t}_{2}^{\;}=\frac{150¡ã}{360¡ã}{T}_{2}^{\;}=\frac{5}{12}\frac{2¦Ðm}{q\frac{B}{2}}=\frac{5¦Ðm}{3qB}$
ËùÒÔµÚ¶þ´Î¾­¹ýxÖáËù¾­ÀúµÄʱ¼ä$t={t}_{1}^{\;}+{t}_{2}^{\;}=\frac{7¦Ðm}{3qB}$
£¨3£©¸ù¾Ý¶¯Äܶ¨ÀíÖª´Ó³öÉäµãµ½·µ»ØAµã¶¯Äܲ»±ä£¬µç³¡Á¦Ã»ÓÐ×ö¹¦£¬Öª³öÉäµãºÍAµãÁ¬ÏßΪһµÈÊÆÃæ£¬µç³¡Ç¿¶È·½Ïò´¹Ö±Á¬ÏßбÏòÏÂ
ˮƽ·½Ïò£º${v}_{\;}^{2}=2\frac{q{E}_{x}^{\;}}{m}\frac{mv}{2qB}£¨4+\sqrt{3}£©$½âµÃ${E}_{x}^{\;}=£¨4+\sqrt{3}£©vB$
ÊúÖ±·½Ïò£º${v}_{\;}^{2}=2\frac{q{E}_{y}^{\;}}{m}\frac{mv}{2qB}$½âµÃ${E}_{y}^{\;}=vB$
µç³¡Ç¿¶ÈµÄ×îСֵ$E=\sqrt{{E}_{x}^{2}+{E}_{y}^{2}}=\sqrt{£¨4+\sqrt{3}£©_{\;}^{2}+1}vB$£¬·½Ïò´¹Ö±³öÉäµãºÍAÁ¬ÏßбÏòÏÂ
´ð£º£¨1£©µÚ¶þ´Î¾­¹ýxÖáʱµÄ×ø±ê$£¨-\frac{mv}{2qB}£¨4+\sqrt{3}£©£¬0£©$£»
£¨2£©$tan¦È=\frac{\sqrt{3}}{2}$´ÓAµã³ö·¢µ½µÚ¶þ´Î¾­¹ýxÖáËù¾­ÀúµÄʱ¼ä$\frac{7¦Ðm}{3qB}$£»
£¨3£©ÔÚµÚ¶þÏóÏÞµÄÄ³ÇøÓòÄÚ£¨°üº¬³öÉäµã£©¼ÓÒ»ÔÈÇ¿µç³¡£¬Ê¹Á£×ÓÒÔÓë³ö·¢Ê±ÏàͬµÄËÙ¶ÈÓֻص½Aµã£®ÇóËù¼Óµç³¡µÄ×îСֵ$\sqrt{£¨4+\sqrt{3}£©_{\;}^{2}+1}vB$ºÍ·½Ïò´¹Ö±³öÉäµãºÍAµãÁ¬ÏßбÏòÏ£®

µãÆÀ ±¾ÌâǰÁ½Ð¡ÎʱȽϻù´¡£¬µÚÈýСÎÊÄѶȽϴó£¬ÐèÒª·ÖÎöÇå³þ£¬²»ÄÜ´íÎóµÄµ±³ÉÀàÆ½Å×Ô˶¯È¥×ö£¬ÕÆÎÕ»ù±¾½âÌâ˼ÏëºÜ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Ô­×ӵĺËʽ½á¹¹ÊÇÌÀÄ·Éú·¢ÏÖµÄ
B£®ÔÚ¿µÆÕ¶ÙЧӦÖУ¬µ±ÈëÉä¹â×ÓÓë¾§ÌåÖеĵç×ÓÅöײʱ£¬°ÑÒ»²¿·Ö¶¯Á¿×ªÒƸøµç×Ó£¬Òò´Ë¹â×ÓÉ¢Éäºó²¨³¤±äС
C£®Ò»Êø¹âÕÕÉ䵽ijÖÖ½ðÊôÉϲ»ÄÜ·¢Éú¹âµçЧӦ£¬¿ÉÄÜÊÇÒòΪÕâÊø¹âµÄ¹âǿ̫С
D£®ÓüÓÈÈ¡¢¼Óѹ»ò¸Ä±äÆä»¯Ñ§×´Ì¬µÄ·½·¨¶¼²»ÄܸıäÔ­×ÓºËË¥±äµÄ°ëË¥ÆÚ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÈçͼËùʾ£¬Ò»Ð¡ÐÍ·¢µç»úÄÚÓÐN=100ÔѾØÐÎÏßȦ£¬ÏßÈ¦Ãæ»ýS=0.10m2£¬ÏßȦ×ܵç×èr=1¦¸£®ÔÚÍâÁ¦×÷ÓÃϾØÐÎÏßȦÔڴŸÐӦǿ¶ÈB=0.10TµÄÔÈÇ¿´Å³¡ÖУ¬ÒԺ㶨µÄתËÙn=50r/sÈÆ´¹Ö±Óڴų¡·½ÏòµÄ¹Ì¶¨ÖáOO'ÔÈËÙת¶¯£¬·¢µç»úÏßȦÁ½¶ËÓëR=9¦¸µÄµç×è¹¹³É±ÕºÏ»ØÂ·£®´ÓÏßÈ¦Æ½ÃæÍ¨¹ýÖÐÐÔÃæÊ±¿ªÊ¼¼ÆÊ±£®Çó£º
£¨1£©×ª¹ý30¡ãʱÏßȦÖвúÉúµÄ˲ʱµç¶¯ÊƵĴóС£»
£¨2£©×ª¹ý60¡ãµÄ¹ý³ÌÖÐͨ¹ýµç×èRµÄµçºÉÁ¿£»
£¨3£©ÏßȦת¶¯Ò»ÖÜ£¬µçÁ÷ͨ¹ýµç×èR²úÉúµÄ½¹¶úÈÈ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®¶ÔÓÚ×öÔÈËÙÔ²ÖÜÔ˶¯µÄÎïÌ壬ÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ËÙ¶ÈÔڸı䣬¶¯ÄÜÒ²ÔڸıäB£®ËÙ¶ÈÔڸı䣬¶¯Äܲ»±ä
C£®ËٶȲ»±ä£¬¶¯ÄÜÔڸıäD£®ËùÊܺÏÁ¦ÊÇÒ»¸öºãÁ¦

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬Ì«ÑôϵÖÐÐÇÌåAÈÆÌ«Ñô×ö°ë¾¶ÎªR1µÄÔ²ÖÜÔ˶¯£¬ÐÇÌåB×÷Å×ÎïÏßÔ˶¯£¬BÔÚ½üÈյ㴦ÓëÌ«ÑôµÄÏà¾àΪR2=2R1£¬ÇÒÁ½¹ìµÀÔÚÍ¬Ò»Æ½ÃæÉÏ£¬Á½ÐÇÌåÔ˶¯·½ÏòÈçͼÖмýÍ·Ëùʾ£®ÉèBÔ˶¯µ½½üÈÕµãʱ£¬AÇ¡ºÃÔ˶¯µ½BÓëÌ«ÑôÁ¬ÏßÉÏ£®A¡¢BËæ¼´·¢ÉúijÖÖÇ¿ÁÒµÄÏ໥×÷ÓöøÑ¸Ëٺϲ¢³ÉÒ»¸öеÄÐÇÌ壬Æä¼äµÄÖÊÁ¿Ëðʧ¿ÉºöÂÔ£¬ÊÔÖ¤Ã÷ÐÂÐÇÌåÈÆÌ«ÑôµÄÔ˶¯¹ìµÀΪÍÖÔ²£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÎïÌåÔÚÏÂÁÐÔ˶¯¹ý³ÌÖУ¬»úеÄÜÊØºãµÄÊÇ£¨¡¡¡¡£©
A£®Ö±Éý·É»úÔØ×ÅÎïÌåÔÈËÙÉÏÉýB£®ÆðÖØ»úÔÈËÙÏ·ŵÄÎïÌå
C£®µçÌÝÔØ×ÅÎïÌåÔȼÓËÙÉÏÉýD£®ÎïÌåÑØ¹â»¬Ð±Ãæ¼ÓËÙÏ»¬

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÊµÑéÌâ

1£®ÖÊÁ¿ÎªmµÄСÇòAÔÚ¾àµØÃæ¸ßh´¦ÒÔ³õËÙ¶Èv0ˮƽÅ׳ö£¬ÖÊÁ¿Îª2mµÄСÇòBÔÚ¾àµØÃæ¸ßh´¦ÒÔ³õËÙ¶È2v0ˮƽÅ׳ö£¬ÔòAÇòÂ䵨µÄʱ¼äµÈÓÚ£¨¡°´óÓÚ¡±¡°Ð¡ÓÚ¡±»ò¡°µÈÓÚ¡±£©BÂ䵨µÄʱ¼ä£»AÇòÂäµØÇ°Ë²¼äÔÚÊúÖ±·½ÏòµÄËÙ¶ÈÊÇ$\sqrt{2gh}$£¬BÇòÂäµØÇ°Ë²¼äµÄËÙ¶ÈÊÇ$\sqrt{{{v}_{0}}^{2}+2gh}$£¬AÔÚˮƽ·½ÏòÉϵÄÎ»ÒÆÊÇ${v}_{0}\sqrt{\frac{2h}{g}}$£¬AÇòÓëBÇóÔÚˮƽ·½ÏòÉϵÄÎ»ÒÆÖ®±È1£º2£»AÇòµÄ¹ì¼£·½³ÌÊÇ$y=\frac{g}{2{{v}_{0}}^{2}}{x}^{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Ë«·ì¸ÉÉæÊµÑéÖУ¬Èô°ÑË«·ìÖеÄÒ»Ìõ·ìÕÚס£¬ÆÁÄ»ÉϳöÏÖÒ»ÌõÁÁÏß
B£®±¡Ä¤¸ÉÉæÌõÎÆ²úÉúµÄÔ­ÒòÊÇÍ¬Ò»Êø¹âÏß¾­±¡Ä¤Ç°ºóÁ½±íÃæ·´ÉäºóÏ໥µþ¼Ó
C£®¶ÔÓÚÁ½ÖÖ½éÖÊÀ´Ëµ£¬¹âÔÚÆäÖд«²¥µÄËÙ¶ÈÏà¶Ô´óµÄ½éÖʽйâÃܽéÖÊ
D£®ÈÃ×ÔÈ»¹âͨ¹ýÆ«ÕñƬP£¬²¢ÒÔ¹âµÄ´«²¥·½ÏòΪÖáÐýתƫÕñƬ͸Éä¹âµÄÇ¿¶È²»±ä

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®¾ØÐÎÏß¿òÔÚÔÈÇ¿´Å³¡ÄÚÔÈËÙת¶¯¹ý³ÌÖУ¬Ïß¿òÊä³öµÄ½»Á÷µçÑ¹ËæÊ±¼ä±ä»¯µÄͼÏóÈçͼËùʾ£¬ÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®1sÄ©Ïß¿òÆ½Ãæ´¹Ö±Óڴų¡£¬Í¨¹ýÏß¿òµÄ´ÅͨÁ¿±ä»¯×î¿ì
B£®2sÄ©Ïß¿òÆ½Ãæ´¹Ö±Óڴų¡£¬Í¨¹ýÏß¿òµÄ´ÅͨÁ¿×î´ó
C£®½»Á÷µçѹµÄ×î´óֵΪ36$\sqrt{2}$V£¬ÆµÂÊΪ0.50Hz
D£®½»Á÷µçѹµÄÓÐЧֵΪ36$\sqrt{2}$V£¬ÖÜÆÚΪ4s

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸