精英家教网 > 高中物理 > 题目详情

如图(a)所示,光滑的平行长直金属导轨置于水平面内,间距为L、导轨左端接有阻值为R的电阻,质量为m的导体棒垂直跨接在导轨上。导轨和导体棒的电阻均不计,且接触良好。在导轨平面上有一矩形区域内存在着竖直向下的匀强磁场,磁感应强度大小为B。开始时,导体棒静止于磁场区域的右端,当磁场以速度v1匀速向右移动时,导体棒随之开始运动,同时受到水平向左、大小为f的恒定阻力,并很快达到恒定速度,此时导体棒仍处于磁场区域内。

⑴求导体棒所达到的恒定速度v2

⑵为使导体棒能随磁场运动,阻力最大不能超过多少?

⑶导体棒以恒定速度运动时,单位时间内克服阻力所做的功和电路中消耗的电功率各为多大?

⑷若t=0时磁场由静止开始水平向右做匀加速直线运动,经过较短时间后,导体棒也做匀加速直线运动,其vt关系如图(b)所示,已知在时刻t导体棒瞬时速度大小为vt,求导体棒做匀加速直线运动时的加速度大小。

 



解:⑴EBLv1v2

IE/R

速度恒定时有:

可得:

⑷因为

导体棒要做匀加速运动,必有v1v2为常数,设为Dv,则:

则:

可解得:


练习册系列答案
相关习题

科目:高中物理 来源: 题型:


一水平放置的圆盘绕竖直轴转动,在圆盘上沿半径开有一条宽度为2 mm的均匀狭缝。将激光器与传感器上下对准,使二者间连线与转轴平行,分别置于;圆盘的上下两侧,且可以同步地沿圆盘半径方向匀速移动,激光器接收到一个激光信号,并将其输入计算机,经处理后画出相应图线。图(a)为该装置示意图,图(b)为所接收的光信号随时间变化的图线,横坐标表示时间,纵坐标表示接收到的激光信号强度,图中Dt1=1.0´10-3 s,Dt2=0.8´10-3 s。

(1)利用图(b)中的数据求1 s时圆盘转动的角速度;

(2)说明激光器和传感器沿半径移动的方向;

(3)求图(b)中第三个激光信号的宽度Dt3

查看答案和解析>>

科目:高中物理 来源: 题型:


如图甲所示,两水平放置的平行金属板C、D相距很近,上面分别开有小孔OO',水平放置的平行金属导轨P、Q与金属板C、D接触良好,且导轨处在B1=10T的匀强磁场中,导轨间距L=0.5m,金属棒AB紧贴着导轨沿平行导轨方向在磁场中做往复运动,其速度图象如图乙.若规定向右运动的速度方向为正,从t=0时刻开始,由C板小孔O处连续不断以垂直于C板方向飘入质量为m = 3.2×10-21kg、电量q = +1.6×10-19C的粒子(飘入的速度很小,可视为零).在D板外侧有以MN为边界的足够大的匀强磁场B2=10T,MND相距,B1B2的方向如图所示(粒子重力及相互作用不计),求:

(1)0~4.0s时间内哪些时刻发射的粒子能穿过电场并飞出磁场边界MN?

(2)粒子从边界MN射出来的位置之间的最大距离为多少?

查看答案和解析>>

科目:高中物理 来源: 题型:


如图所示,间距为L的两条足够长的平行金属导轨与水平面的夹角为θ,导轨光滑且电阻忽略不计.场强为B的条形匀强磁场方向与导轨平面垂直,磁场区域的宽度为d1,间距为d2.两根质量均为m、有效电阻均为R的导体棒ab放在导轨上,并与导轨垂直. (设重力加速度为g)

(1)若a进入第2个磁场区域时,b以与a同样的速度进入第1个磁场区域,求b穿过第1个磁场区域过程中增加的动能△Ek

(2)若a进入第2个磁场区域时,b恰好离开第1个磁场区域;此后a离开第2个磁场区域时,b 又恰好进入第2个磁场区域.且ab在任意一个磁场区域或无磁场区域的运动时间均相.求b穿过第2个磁场区域过程中,两导体棒产生的总焦耳热Q

(3)对于第(2)问所述的运动情况,求a穿出第k个磁场区域时的速率

查看答案和解析>>

科目:高中物理 来源: 题型:


如图左所示,边长为lL的矩形线框互相垂直,彼此绝缘,可绕中心轴O1O2转动,将两线框的始端并在一起接到滑环C,末端并在一起接到滑环DCD彼此绝缘.通过电刷跟CD连接.线框处于磁铁和圆柱形铁芯之间的磁场中,磁场边缘中心的张角为45°,如图右所示(图中的圆表示圆柱形铁芯,它使磁铁和铁芯之间的磁场沿半径方向,如图箭头所示).不论线框转到磁场中的什么位置,磁场的方向总是沿着线框平面.磁场中长为l的线框边所在处的磁感应强度大小恒为B,设线框的电阻都是r,两个线框以角速度ω逆时针匀速转动,电阻R=2r.

   (1)求线框转到图右位置时感应电动势的大小;

   (2)求转动过程中电阻R上的电压最大值;

   (3)从线框进入磁场开始时,作出0~TT是线框转动周期)时间内通过R的电流

        iR随时间变化的图象;

   (4)求外力驱动两线框转动一周所做的功。

查看答案和解析>>

科目:高中物理 来源: 题型:


图3-(甲)是证实玻尔关于原子内部能量量子化的一种实验装置的示意图,从电子枪A射出的电子进入充有氦气的容器B中,在O点与氦原子核碰撞后进入速度选择器C,而氦原予则由低能级被激发到高能级.速度选择器C由两个同心圆弧电极P1P2组成,电极间场强方向沿半径方向.当两极间加电压U时,只允许具有确定能量的电子通过,并进入检测装置D,由检测装置D测出电了产生的电流I.改变电压,同时测出I的数值,就可以确定碰撞后进入速度选择器的电子能量分布.为研究方便:①忽略电子重力;②设电子与原子碰撞前原子静止,原子质量比电子大得多,碰撞后原子虽被稍微移动但仍可忽略电子的这一能量损失,即假设碰撞后原子仍不动;③当电子与原子做弹性碰撞时,电子损失的动能传给原子,使原子内部能量增加.

⑴设速度选择器两端电压为UV时,允许通过的电子动能为EleV.试写出EleV与UV的关系式.设通过速度选择器的电子轨迹半径r=2m,电极P1P2的间隔d=0.1m,两极间场强的大小处处相等.

⑵如果电子枪射出的电予动能Ek=50eV,改变P1P2之间的电压U,测得电流I,得到UI图线如图3-(乙)所示.图线表明当电压U分别为5.00V、2.88V、2.72V、2.64V时,电流出现峰值.试说明U=5.00V与U=2.88V时,电子和氦原子碰撞时电子能量的变化情况.求出氦原子三个激发态的能级En,设基态能量E1=0。                                   图3

查看答案和解析>>

科目:高中物理 来源: 题型:


如图,长为L的粗糙长木板水平放置,在木板的A端放置一个质量m的小物块。现缓慢抬高A端,使木板以左端为轴转动。当木板转到与水平面的夹角为α时,小物块开始滑动,此时停止转动木板,让小物块滑到底端。取重力加速度为g。下列说法正确的是(     )

(A)整个过程支持力对物块做功为零

(B)整个过程支持力对物块做功为mgLsinα

(C)整个过程木板对物块做功为零

(D)整个过程木板对物块做功大于物块机械能的增量

查看答案和解析>>

科目:高中物理 来源: 题型:


用一根横截面积为S、电阻率为ρ的硬质导线做成一个半径为r的圆环,ab为圆环的直径。如图所示,在ab的左侧存在一个匀强磁场,磁场垂直圆环所在平面,方向如图,磁感应强度大小随时间的变化率(k<0),则

A.圆环具有扩张的趋势

B.圆环中产生逆时针方向的感应电流

C.圆环中感应电流的大小为krS/2ρ

D.图中a、b两点之间的电势差

查看答案和解析>>

科目:高中物理 来源: 题型:


如图(a)所示,A、B为钉在光滑水平面上的两根铁钉,小球C用细绳拴在铁钉B上(细绳能承受足够大的拉力),A、B、C在同一直线上。t=0时,给小球一个垂直于绳的速度,使小球绕着两根铁钉在水平面上做圆周运动。在0≤t≤10s时间内,细绳的拉力随时间变化的规律如图(b)所示,则下列说法中正确的有(     )

A.两钉子间的距离为绳长的1/6

B.t=10.5s时细绳拉力的大小为6N

C.t=14s时细绳拉力的大小为10N

D.细绳第三次碰钉子到第四次碰钉子的时间间隔为3s

查看答案和解析>>

同步练习册答案