图3-(甲)是证实玻尔关于原子内部能量量子化的一种实验装置的示意图,从电子枪A射出的电子进入充有氦气的容器B中,在O点与氦原子核碰撞后进入速度选择器C,而氦原予则由低能级被激发到高能级.速度选择器C由两个同心圆弧电极P1和P2组成,电极间场强方向沿半径方向.当两极间加电压U时,只允许具有确定能量的电子通过,并进入检测装置D,由检测装置D测出电了产生的电流I.改变电压,同时测出I的数值,就可以确定碰撞后进入速度选择器的电子能量分布.为研究方便:①忽略电子重力;②设电子与原子碰撞前原子静止,原子质量比电子大得多,碰撞后原子虽被稍微移动但仍可忽略电子的这一能量损失,即假设碰撞后原子仍不动;③当电子与原子做弹性碰撞时,电子损失的动能传给原子,使原子内部能量增加.
⑴设速度选择器两端电压为UV时,允许通过的电子动能为EleV.试写出EleV与UV的关系式.设通过速度选择器的电子轨迹半径r=2m,电极P1与P2的间隔d=0.1m,两极间场强的大小处处相等.
⑵如果电子枪射出的电予动能Ek=50eV,改变P1与P2之间的电压U,测得电流I,得到U-I图线如图3-(乙)所示.图线表明当电压U分别为5.00V、2.88V、2.72V、2.64V时,电流出现峰值.试说明U=5.00V与U=2.88V时,电子和氦原子碰撞时电子能量的变化情况.求出氦原子三个激发态的能级En,设基态能量E1=0。 图3
![]()
解:(1)当两极间电压为U时,具有速度v的电子进入速度选择器两极间的电场中,所受电场力方向与v垂直,且大小不变,则电子在两极间做匀速圆周运动,电场力提供向心力,设电子质量为m,电量为e,则电场力F=qE=eU/d
根据牛顿第二定律有 eU/d=mv2/R
解得电子动能Ek=mv2/2=eUR/2d=10.0U(eV) (6分)
即动能与电压成正比,此结果表明当两极间电压为U时,允许通过动能为10.0U(eV)的电子,而那些大于或小于10U(eV)的电子,由于受到过小或过大的力作用做趋心或离心运动而分别落在两电极上,不能到达检测装置D.
(2)I—U图线表明电压为5.0 V时有峰值,表明动能为50.0 eV的电子通过选择器,碰撞后电子动能等于入射时初动能,即碰撞中原子没有吸收能量,其能级不变.
当电压为2.88 V、2.72 V、2.64 V时出现峰值,表明电子碰撞后,动能分别从50.0 eV,变为28.8 eV,27.2 eV、26.4 eV,电子通过选择器进入检测器,它们减小的动能分别在碰撞时被原子吸收,I—U图线在特定能量处出现峰值,表明原子能量的吸收是有选择的、分立的、不连续的存在定态.(例如在电压为4.0 V时没有电流,表明碰撞后,电子中没有动能为40.0 eV的电子,即碰撞中,电子动能不可能只损失(50.0-40.0)eV=10.0 eV,也就是说氦原子不吸收10.0 eV的能量,即10.0 eV不满足能级差要求)(4分)
(3)设原子激发态的能极为En,E1=0,则从实验结果可知,氦原子可能的激发态能级中有以下几个能级存在:
(50.0-28.8)eV=21.2 eV
(50.0-27.2)eV=22.8 eV
(50.0-26.4)eV=23.6 eV (6分)
科目:高中物理 来源: 题型:
在光滑的水平轨道上有两个半径都是r的小球A和B,质量分别为m和2m,当两球心间的距离大于l(l比2r大得多)时,两球之间无相互作用力:当两球心间的距离等于或小于l时,两球间存在相互作用的恒定斥力F.设A球从远离B球处以速度v0沿两球连心线向原来静止的B球运动,如图所示.欲使两球不发生接触,v0必须满足什么条件? ![]()
查看答案和解析>>
科目:高中物理 来源: 题型:
速调管是用于甚高频信号放大的一种装置(如图11所示),其核心部件是由两个相距为s的腔组成,其中输入腔由一对相距为l的平行正对金属板构成(图中虚线框内的部分)。已知电子质量为m,电荷量为e,为计算方便,在以下的讨论中电子之间的相互作用力及其重力均忽略不计。
(1)若输入腔中的电场保持不变,电子以一定的初速度v0从A板上的小孔沿垂直A板的方向进入输入腔,而由B板射出输入腔时速度减为v0/2,求输入腔中的电场强度E的大小及电子通过输入腔电场区域所用的时间t;
![]()
(2)现将B板接地(图中未画出),在输入腔的两极板间加上如图12所示周期为T的高频方波交变电压,在 t=0时A板电势为U0,与此同时电子以速度v0连续从A板上的小孔沿垂直A板的方向射入输入腔中,并能从B板上的小孔射出,射向输出腔的C孔。若在nT~(n+1)T的时间内(n=0,1,2,3……),前半周期经板射出的电子速度为v1(未知),后半周期经B板射出的电子速度为v2(未知),求v1与v2的比值;(由于输入腔两极板间距离很小,且电子的速度很大,因此电子通过输入腔的时间可忽略不计)
(3)在上述速度分别为v1和v2的电子中,若t时刻经B板射出速度为v1的电子总能与t+T/2时刻经B板射出的速度为v2的电子同时进入输出腔,则可通过相移器的控制将电子的动能转化为输出腔中的电场能,从而实现对甚高频信号进行放大的作用。为实现上述过程,输出腔的C孔到输入腔的右极板B的距离s应满足什么条件?
查看答案和解析>>
科目:高中物理 来源: 题型:
如图所示为利用电磁作用输送非导电液体装置的示意图。一边长为L、截面为正方形的塑料管道水平放置,其右端面上有一截面积为A的小喷口,喷口离地的高度为h。管道中有一绝缘活塞。在活塞的中部和上部分别嵌有两根金属棒a、b,其中棒b的两端与一电压表相连,整个装置放在竖直向上的匀强磁场中。当棒a中通有垂直纸面向里的恒定电流I时,活塞向右匀速推动液体从喷口水平射出,液体落地点离喷口的水平距离为S。若液体的密度为ρ,不计所有阻力,求:
(1)活塞移动的速度;
(2)该装置的功率;
(3)磁感强度B的大小;
(4)若在实际使用中发现电压表的读数变小,试分析其可能的原因。
查看答案和解析>>
科目:高中物理 来源: 题型:
如图(a)所示,光滑的平行长直金属导轨置于水平面内,间距为L、导轨左端接有阻值为R的电阻,质量为m的导体棒垂直跨接在导轨上。导轨和导体棒的电阻均不计,且接触良好。在导轨平面上有一矩形区域内存在着竖直向下的匀强磁场,磁感应强度大小为B。开始时,导体棒静止于磁场区域的右端,当磁场以速度v1匀速向右移动时,导体棒随之开始运动,同时受到水平向左、大小为f的恒定阻力,并很快达到恒定速度,此时导体棒仍处于磁场区域内。
⑴求导体棒所达到的恒定速度v2;
⑵为使导体棒能随磁场运动,阻力最大不能超过多少?
⑶导体棒以恒定速度运动时,单位时间内克服阻力所做的功和电路中消耗的电功率各为多大?
⑷若t=0时磁场由静止开始水平向右做匀加速直线运动,经过较短时间后,导体棒也做匀加速直线运动,其v-t关系如图(b)所示,已知在时刻t导体棒瞬时速度大小为vt,求导体棒做匀加速直线运动时的加速度大小。
查看答案和解析>>
科目:高中物理 来源: 题型:
某大型游乐场内的新型滑梯可以等效为如图所示的物理模型.一个小朋友在AB段的动摩擦因数μ1<tanθ,BC段的动摩擦因数为μ2>t
anθ,他
从A点开始下滑,滑到C点恰好静止,整个过程中滑梯保持静止状态.则该小朋友从斜面顶端A点滑到底端C点的过程中
A.地面对滑梯的摩擦力方向先水平向左,后水平向右
B.地面对滑梯始终无摩擦力作用
C.地面对滑梯的支持力的大小始终等于
小朋友和滑梯的总重力的大小
D.地面对滑梯的支持力的大小先大于、后小于小朋友和滑梯的总重力的大小
查看答案和解析>>
科目:高中物理 来源: 题型:
如图,水平放罝的直导线正下方有一只可自由转动的小磁针.当导线中通过自右向左的电流时,小磁针N极的转动情况是
A.垂直于纸面向里转
B.垂直于纸面向外转
C.在纸面内顺时针转
D.在纸面内逆时计转
![]()
查看答案和解析>>
科目:高中物理 来源: 题型:
如图所示,在水平面上有两条光滑的长直平行金属导轨MN、PQ,电阻忽略不计,导轨间距离为L,磁感应强度为B的匀强磁场垂直于导轨所在平面。质量均为m的两根金属a、b放置在导轨上,a、b接入电路的电阻均为R。轻质弹簧的左端与b杆连接,右端固定。开始时a杆以初速度
。向静止的b杆运动,当a杆向右的速度为
时,b杆向右的速度达到最大值
,此过程中a杆产生的焦耳热为Q,两杆始终垂直于导轨并与导轨接触良好,则b杆达到最大速度时
![]()
![]()
A.b杆受到弹簧的弹力为![]()
B.a杆受到的安培力为![]()
C.a、b杆与弹簧组成的系统机械能减少量为Q
D.弹簧具有的弹性势能为![]()
查看答案和解析>>
科目:高中物理 来源: 题型:
下列是关于物理学研究方法或物理学史的几种说法,其中叙述正确的是
A.探究求合力的方法实验运用了控制变量法
B.用点电荷来代替实际带电体运用了理想模
型法
C.牛顿发现了万有引力定律,并测出了引力常量
D.法拉第明确了制造发电
机的科学依据,使电能在生产生活中大规模应用成为可能
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com